RD-A152 746 INVESTIGATION AND IMPLEMENTATION OF R TREE 1/2.
TRANSFORMATION SYSTEM FOR USER FRIENDLY PROGRRHRING(U)
. NAVAL POSTGRADUATE SCHOOL MONTEREY CA M B CHOK
UNCLASSIFIED

--- ;

B s gt Sam s Sir st oty ate a-a arf ol TRV Yo AU TR W JUE SO L.

B a0 o o 8 ana awe' AT Aeho e Sae fod i A e S e
R

fled £ i

L

- |”2.0
- =
s

I

S

=] IERIS

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDAKDS 196« A

rv—.*—rv—rv‘s‘*\
- > . P
..

@'

gl s . DD LB

L

NAVAL POSTGRADUATE SCHOOL

Monterey, Galifornia

AD-A152 716

C
THESISs (7 E

INVESTIGATION AND IMPLEMENTATION
SN TREE TRANSFORMATION SYSTEM
SORCUSER FRIENDLY PROGRAMMING

bv
>
a T “onamed B. Chok
(i December 1984
Ll
R
—
i
e Choesd Lo psor: Bruce J. Macleonnan
— \pprove Doy public release, distribution is unlimited
- 11 gf;

P T O O ST NP Ty ST H 7 U oy Ve T o

T

| A L e M - S i e —— Palie it et Aaiiu RS Tt dian dhe S AR A A A

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE BEF o o DN oRM
1. REPORT NUMBER 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
Ih-t/s2 [)id
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED
Investigation and Implementation of a [Master's Thesis
Tree Transformation System for User December 1984

Friendly Programming 6. PERFORMING ORG. REFPGRT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

Mohamed B. Chok

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT PROJECT, TASK
. . AREA & WORK UNIT NUMBERS
Naval Postgraduate School
Monterey, California 939453

1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Naval Postgraduate School December 1984
Monterey, California 93945 13. NUMBER OF PAGES
136
14, MONITORING AGENCY NAME & ADDRESS(!! different from Controlling Oftice) 1S SECURITY CLASS. (of this report)
UNCLASSIFIED

1Sa. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution is unlimited

17. DISTRIBUTION STATEMENT (of the abastract entered in Block 20, I different from Report)

18. SUPPLEMENTARY NOTES

19 KE ¢ WORDS (Continue on reverse side if necessary and ldentify by block number)

template, concrete transformation rule, abstract transformation
rule, alistract tree, trec transformation, tree pattern match-
ing, interpreter, synthesization, term rewriting system,
application programming, functional programming.

| 20. ABSTRACT /Continue on reverse side {f neceseary and (dentity by block number)

"The programming system (TTPS) described in this thesis is based on
trece transformation techniques, comonly known as abstract trans-
formation. The objects manipulated by the user through TIPS ave:
the templates, the transformation rules, and the programs. The
templates detfine the syntactic and semantic language framework
which will be used to parse and unparse both the rules and the
progrim trees. The rules define the semantic behavior ol the

transtormation process. The proeram represents the (Continued)

—

DD, ™), 1473 ceoimion oF 1 NOv 63 1S OBsOLETE ~
% N 0102- LF-014- 6601 1

SECURITY CLASSIFICATION OF THIS PAGE (When Deats Entered)

R . R RS
L PR WP VAR U | PR Y U N W L S Y

&

...ié.).;)—.._“.";‘-

. ,I ,"1‘;‘.' .]‘..‘L'l‘l'l"'l.

L@

At

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

L Sande aile i seis e d e g T Ty T eyye—"

ABSTRACT (Continued)

source tree which describes the problem to solve, uand will be
interpreted by a successive application of the supplied rules
until they no longer apply.
"TTPS' provides an appropriate environment for a large class of
applications (e.¢. system programming, code generation, structure
transformation, simulation of svntax directed editors, and other
conventional applications), and supports many programming styles
such as functional programming, conventional programming, and
user defined stvlie. - I T .

14

b

SECURITY CLASSIFICATION OF THIS PAGE(When Dete Entered)

Approved for public release; distribution is unlimited.

Investigation and Implementation
of a Trée Transformation Systenm
for User Priendly Programming

by
Accessing o
Mohamed B. Chok SN
Captain, Tunisian Army NTIS CGRiyl
PTIC Tax
Unnanneos oo
Justitic-t

Submitted in partial fulfillment of the
requirements for the degree of

PRl Bt i i PR AU AR A . S ek i A Sl Al At S Mt B g G A A WL BV A B a i aa Nt e - i L s B s aa Sen by

By_ .
MASTER OF SCIENCE IN COMPUTER SCIENCE |- t7'"
from the B
Dist

NAVAL POSTGRADUATE SCHOOL ,
December 1984 / ;
A__-L-“ L

//Z//// Zé. [' *—*"‘

Author:

- Hoﬁamea B. Chok

. M -
Approved by: \ ;)t? éﬁ; < <.
PP Y5 eee 771//:;"§C: ag AZQ%H_ STXdVISOT

/ C A
————— e —— ,(L ———————————
ruce ennan alrman,

Department of Compu{er Science

Ve T Mg
KHéEIéfTT'H"§
Dean of Information an

llpy Sciences

cmdal o . ™ bR TE E Y DR S S S N W S S S S W

QUALITY
INSPECTED

1 |

ABSTRACT

The frogramming system (TITPS) described in this thesis
is based on tree transformatior techniques, commonly Kknown
as abstract transformation. The objects manipulated by the
user through "TTPS" are: the templates, the transformation.
rules, and the programs. The templates define the syntactic
and semantic language framework which will be used to fparse
and unparse bota the rules and the program trees. The rules
define the semantic behavior of the transformation fprocess.
The program represents the source tree which describes the
probliem to solve, and will be interpreted by a successive
application of the supplied rules until they nc¢ longer
apply.

"ITPS" provides an appropriate environment for a large
class of applications (e.g. system programming, code genera-
tion, structure transformaticn, simulation of syntax
directed editors, and other conventional applications), and
supports many programming styles such as functional program-
ming, conventional programming, and user defined style.

) S Z AP A A8 Ak A o

T o

Pp——

P———

TABLE OF CCNTENTS

I. INTRODUCTION . v« ¢ @ ¢ « o o o o o o o o
A. MOTIVATION, VIERPOINT =« ¢ o o o o o o =
Be APPROACH . ¢ o ¢ o o o o o o o« « o o« o =
1I. DESCRIPTION OF THE PROGRAMMING SYSTEM AND ITS
ENVIEONMENT . o o o o o o 2 @ o o« a o o« « =
A. GENERAL ¢ ¢ o o o o o« o © o s s o o« o =
B. DEFINITIONS =« « o o o o o « o o o o« o« =
1« Template « « « « « o o o o o« o « =« =
2. Transformation Rule « « .
3. ProgramsS o« «. « « o o o o o« @« « o o o
4. Tree Matching and Variable Binding .
5. Synthesization and ITree Substitution
6. Built-in Templates and Rules
C. DESCRIPTICN OF TYPICAL PROGRAMHMING
SCENARIO & ¢ o o « o ¢ e o o o o s o o« =
1. Templates Creatich « « « ¢ o o « « =
2. Rule Constructions « « ¢« o« ¢ o o« o .
3. Writing the Progralls « . « « « « « «
4. Program Interpretation
D. REQUIREMENIS SPECIFICATION OF THE

PROGRAMMING ENVIRONMENT, TOOLS DEFINITION

1.
2.
3.
4.

I1I. SYSTEM

A.

Specifications Description
Environment Tools .« . « . « . « < .
Integration . .« ¢ v o o o o o ¢ o o

Implementation Etvironment

DESIGH e o ¢ o o o o o« o o o« s « o« =

THE USER INTERFACE ¢ ¢ ¢ o @« o o o =« o« @

12
12
14

16
16
16
16
17
19
20
29

22

22
22
23
23
24

24
24
31
31

o)
L

- .
-

I‘L

Y |

Aa a4

s RIS
A‘ALA'

'

.

1
e

il

LR afE i S S R

TR TRV TN TSR

Description . « « o « o o =«
Module Selection
Getting Help « « o « o o o &
Znding the Sessicn
Error Handling « « « « « « &
TEMPLATE EDITOR . « « « . .
General Description
Starting the Template Editor
Command Interpreter
Help o o o o o a « « o = o =
Operations on Template Lists
Operations on Templates . .
Exiting the Template Zditor

'Built_in Templates'

CONCLUSIONS DRAWN FRCM THE DESIGN OF
TEMPLATE EDITOR . « « « o o o« &«

THE
1.

2.
3.
4.
5.
6.

RULE ELCITOR . ¢ o o« o o o =

General Description and Module

Architecture . . « «
Starting the Rule Editor . .
The Command Interpreter . .
Lists Manipulaticn

Rule Manipulation

Getting Information on the Current

Rule « « ¢ ¢« o o o o o o o &
Exit the Rule Editor
PROGERAM EDITOR . o « « o o «
Using the Proyram Editor . .
Program Lists
Exiting The Program Editor .
Limitations and Constraints
INTERPRETER =+ « o o o o o o

Locating the Program List .

ST el e T T R TR S TAT AT TN LE L TR RS LN N T W e W e T -—T
"
.
K

33
34
35
35
36
37
37
40
40
40
49
56
63
63

65
67

67
67
67
638
74

84
84
85
85
85
87
87
88
88

W IR IUn 10

et beaian

Y

aarey .y

NP

PRSI P

2. Locating the Progral .« . « « « .« .
3. Creation of the Fesult List and
Progral COPY « « « o o o o o o o =
4, Proyram Transformation
5. Displaying the Result and the Rules
Applied . . <« ¢ o ¢ ¢ ¢ o o o o @
6. Saving and Printing the Result . .
7. Applying the Built_in Rules . . .
8. Exiting the Interpreter
Iv. CCNCLUSTON o v « o ¢ o o o o o o o o s o =
A. DESIGN ASPECTS v ¢ o o o o o o o o o
1. The "Undo" Feature . « . « « « «
2. The Modification Facility
3. Summary of the System Extension .
B. SYSTEM EVALUATION ANLC USES
1. General Applications . . «
2. Other Specific Applications . . .
3. Limitations and Constraints . . .

APPENDIX A:

A.
B.
C.
D.
E.

Fe

G.

A e B A M N S I A e it il b “illady e A g At il el s

USER'S GUIDE TO TTES (A TREE
TRANSFORMATION PROGHAMMING SYSTEM)

INTRODUCTION v o o v o o « o = o o «
TYPING THE COMMANDS =« « o « = « o «
STARTING THE SESSION (TTPS) .« . .
GETTING HELP (HELP) o « « o o o o «
SELECTING A MODULE « « o o « « o « «
ENDING THE SESSION (QUITY
USING THE TEMPLATE ELITOR

1.

Built_in Template . . . « « . .
Open a List (OPEN LISTNAME) .

Euit a List (EDIT LISTNAME STARTING

POINT) o o o o o o o o o « « o
Direct Insertion (INSERT PLACE OF
INSERTION) o o o = « o o o o «

g Sl it Bt gt b Sant Stt Jhsn Jhatv b Jhant AR e fhar 4

« -« « o 89
- « « « 89
« o« =« o 95
- o o« o 96
. e .« 97
e+ « - 99
- -« « 100
. « . 100
« - o« 102
- « - 103
- -« « 106
- « - 108
- « « 108
- - -« 110

« « o 114

-« « . 119
e « o 119
- - - 119
- -« « 120
« o - 120
- « « 120
« e o 120
e - < I21
« <« . A1
e o .« 121
- . < 121
-« - 123

s Nt

. N SAb

. SO

I, FRIIN

e L O

-e—

9.
10.

Saving a List (SAVE FILENAME LISTNAME) . 123

kestoring a List (RESTORE FILENAME

LISTNAME) o o o « o o o « o o « « =
Kemoving a List (KEZMOVE LISTNAHE) -
Merging two Lists (MERGE LISTNAME1 +
LISTNAME2 = LISTMAME3) .« o o o o o
Listing the Template Lists (LIST) .
Inquire About the Current List and

Template (CURRENT) . <« ¢« o « ¢ « .« «

H. USING THE RULE EDITOER (RULEDIT) « e e e

i.
2.
3.

8.

9.

Built_in Rules . « « « o o o o « <« «
Open a Rule List (OPEN LISTNAME) . .
Editing a Rule List (EDIT STARTING
PLACE) o o o o o o o o o o o o = « =«
Direct Insertion (INSERT PLACE OF
INSERTION) @ v o o o o « o o o« o o
Saving a List (SAVE FILENAME) . . .
Printing a List c¢n a Disk File (PRIN
FILENAME) « v o o o o o o o o o «
Restoring a List (RESTORE FILENAME
LISTNAME) o « o o o o o« o o « o o
Inguire About the Current Rule
(CURRENT) & o o o o « o o o o o « «
Endinyg the Rule Editor (EXIT) . . .

I. USING THE EFROGRAM EDITOR . .« . « ¢ & «
J. USING THE INTERPRETER (INTERPRET) « o e

1‘

Exit the Interpreter (EXIT) e 4 e =

LIST CF REFERENCES =« ¢ o o o ¢ o o o o o s o o o« =

BIBLTOGRAPHY

INITIAL DISTRIBUTION IIST o ¢ o o ¢« ¢ « o o o o o @

fhit~,a_a_a_ea_ A aa A s M a A .a_ A a_m - ‘ L

- « 123
- . 124
- « 125
. . 125
- « 125
- - 125
- . 126
- . 127
. . 127
. - 130
. - 130
. « 130
. . 131
- < 13
« - 131
. . 132
. - 132
. - 133
. - 134
. « 135
. < 136

2 lA-uA Pl

4

et B

o g

Attt

AP SESPSLU SREP SR P SUIUNEP T SR VA

i D B B a Bn Al e e e N se b e st A Sadh ek Ubet i AT S A B e i B amal Sl et aiICaR. araL R RE Atie S ik i AN SN i i A

LIST OF 7IABLES

I. Format of the Command Edit « & <« &« « . 42
II. Error Types and the Corresponding Messages for

EAit o ¢ o o o o o & o o o o o 4 e o e o & o o o o Uy
ITI. Format of the Command Save « « « « . . U5 -;
Iv. Error Types and the Corresponding tMessage for

SAVE o 4 & 4 o o 4 e o e e a a s o o e e o o o e a U5 i
V. Format of the Command Restore and Systen

RESPONSES o v ¢ o o o o o o o « o o o o o o o « o U8
VI. Error Types and the Corresponding Messages for
ReStore . ¢ o v @ ¢ o o o o o o o o o« o o o« « « » 49

VII. User System Dialogue before a File is Opened . . . 52

L J

VIII. Formats of the Command Remove and Systen

RESPONSES .+ ¢ o o o o o o o o o =« s = = o« = » « & 53

IX. Error Types and the Corresponding Message for 4
@
REMOVE ¢ v & ¢ o o o o o o o o o o o o o = o » o« « 5S4 “ 1
X. Formats of the Command Me€rge . « « ¢ « o « « « « - 56 R
XI. Error Types and the Corresponding Message for]
MELGE <« o o o o o « o o o « o o = o o =« o« o« o o « 57 "
XII. Formats of the Informaticn Message for Current . . 57 .;
XIII. Dialogue for the Reinitialization of an l:
Existing Rule Iist v o & o ¢ o o o o a o« o« o« = « - 10
XIv. Messages for the Current Command . . . « 84
xv. Euilt_in Rules « & « ¢ & « & =« « « - - . 98 jQ
3
]
1
fj
1
®
1
EJ !
1i
)
i
1
®

A A R ik i 12 TV d A Y R N Ao P Bt T N A R e A M v 2 AR 8 WLt R e e e A s S S s e ‘——.,r'—j
[l

LIST OFP FIGURES

3.1 General Architecture of the System 34
3.2 Architecture of the Template Editor . « « 38 .
3.3 Printing of a Template File U6 i
3.4 A Typical FEditing SesSSion . &« ¢ o &« o o o o o« « . o 62)
3.5 Listing of the Built_in Templates o« . . . €4
3.6 Architecture of the Rule Editor . . « ¢« « « « « . . 68 .
3.7 Perinting of a Saved Kules File .« ¢« o« ¢ & o « o« - o 13 i
3.8 Pretty_printing of a Rule File . . « « ¢« o o « « . T4 ;
3.9 Example of Rule Insertion & ¢« &« & = &« « - 18 j
4.1 TLhe Templates for Case Transformation . « 114 i
4.2 Concrete Transformation Rules for Case 115
4.3 Abstract Transformation Rules for Case 116
A1 Example for Inserting a Rule . . . ¢« o« o o« « - « 129

10

ACKNOWLEDGEMENTS

I would 1like to express my sincere appreciations ani
gratitude to my thesis Advisor, Professor Bruce J.
Maclennan, who suggested this tcpic, <constantly contrituted
to the development of the thesis, and spent much of his time
gulding my research and readiny the drafts of the thesis.

Thanks jo to my Second Reader, Professor Gordon H.
tradley, not only for the reading of the final draft, but
aiso for his assistance provided to we to select the topic,
arnd for his helpful criticism.

I wish to think all the [personnel in the Corputer
Tecunology Curricular Office, and in the Internaticral
Coordinator Zducation Oifice, for their constant interest,
care apd encouragyement throughout the course.

Speclal thanks are due to my wife Hajer, and my children
Hamed and Avmen, for their urderstandinyg, support, and

patience.

. List manigpulation

Since templates will be grouped by lists, there-
Ior. we heed facllities to manipulate the list of teaplates
A5 0 whole. That 1s, operations to save, restore, renove,
il ;rint the template lists. It 1is also useful 1I we can

;¢ two lists of templates which, for some reason, have

Lo [
le¢en created separately, or perhaps by differeat users. To
jer.orm such operations, the system should Le able to handle
4iternatively several 1lists simultaneously present in the
De@OL Y. Tils, of course, will increase the complexity of
the system, since the system and the user have to keep tracr
of wiicn list and template are currently being edited. In
addition, we need facilities to move from one list to
another as well as for getting information about the current
situation. We think, at this stage, it is to early to
predict all the 1iwmplications this might have on the design
of the system and the command languages. Thus, this idea
needs to be 1investigated more Lased on the analysis of the

above tradeoffs.
E. creating and editing the rules

Editing rules includes operations suchk as inser-
tion, deletion, modification, displaying, and printing. A
set of rules constitutes a list which, can be manipulated by
tlL.e user as a whole. Therefore, the system should provide
facilities to create, save restcre, display, and print the
rules lists. Also, we may need to merge two lists, there-
fore we have to design the system so 1t can handle several
li1sts of rules present simultaneousiy 1in the aemory.
However, this will depend on the results of the experimenta-

tion of the correspondiry idea with the templates.

e A

@,

e o O L

OO,

MM SatE atva St et ErE At MBE T Pl M AN e T AT S TREYETELFL YL LOFATLRAE LR FNY

4, Program Interpretation

Having completed the abcve steps, the user carn nLow
attempt the 1interpretation of his programs one at a time.
When the interpretation 1is comypleted the system will auto-
matically unparse and display the result. In addition, 1if
the user desires, the result can be saved, or printed on a

disk file.

D. REQUIREMENTS SPECIPICATICN OF THE PROGRAMMING
ENVIRONMENT, TOOLS DEFINITICN

1. Specifications Description

Based on the typical scenario in the previous
section, we now extend these ideas and investigate in nmore
detail the environment which will support the user at each

phase of the programs development process.
a. creating, and editirg templates
. template manipulaticn

Earlier, we descrikted a template as a combina-
tion of key words and place holders with a variable length.
Therefore, when entering a teumplate, we need a means to
notify the system akcut the end of the template text. In
addition, each template must have a2 name which will consti-
tute its access key. Thaus, we need a tool which supports
these properties and provides a collection of wutilities to
create, access, and edit the templates.

Editing templates 1includes all conventional
operations such as insertion, modification, deletion,

displayirng, and searching.

24

LW

2. Rule Constructions

Cnce the necessary templates are created, the user
needs to create the transformation rules which describe the
permitted tree substitutions. EFach rule includes two parts,
the analysis and the synthesis. Both parts are constructed
using the templates created in the previous step. Thus, the

user 1s not regquired to memorize the structure of the tenmp-

late. Instead, he issues a regquest for the template usinyg
its nanme, and the system will provide him with a ccpy of
this template showing him (in inverse video) the rlace

holders he must fill,

The place holders are indexed by a number followel
by a letter. The number represents the 1level of nesting,
which in fact <corresgonds to the height of the tree. The
letter represents the position from left to rijght within the
same level. The system keeps asking for more input until
all the place holders are filled at ail levels. When this
requirement is satisfied the system will automatically
signal the end of tree construction, and jive the prompt for

the rnext step.
3. Friting the Programs

Programs are constructed and written in the same way

rules are. However place holders «c¢an now Le filled by
either another template or a data value (i.e. numeric
constant, or 1litteral constant). In fact, we use tkis

system to enter programs and rules in a way that 1is very
similar to usiny a syntax directed editor to write conven-
tional frograms.

Durinj one session the user c¢an write many proyrams
giving each one a different name. All the programs together
constitute a list which, as we uill see, can ke processed as

a whole.

23

6. Built-in Templates and kules
A. built_in templates

Built_in templates are an integral part of the
progyramming environment. They are provided to define the
structure of the built_in rules. Thus, when the user wants
a built_in rule to be applied tc¢c a part of his program, he
must use the appropriate built_in template to construct this

part of the program.
b. built_in rules

Built_in rules are basic rules whick car be
applied to the program in the same way the user rules are
applied. Like built_in templates, they are integrated in
the system so they can be directly and efficiently applied

to the u:er progranm.

C. DESCRIPTION OF TYPICAL PROGEAMMING SCENARIO

In this section we present a typical scenario describing
the different steps to construct a program and its environ-

mental context constituted by the templates arnd the rules.

1. Templates Creation

In this first step the user creates the set of temp-
lates necessary for his application. These templates will
constitute the syntactic and the semantic framework to fparse
and unparse both the rules and the programs. Fach template
will have a uni jue name, and a body composed of a comkina-
tion of key words and place holders (i.e. double dashes).

The set of templates can constitute one or several lists.

22

P) o 4 . . DN ST W U S W G WY

. J¢

T SN v

indhadeadaabmdd D binsiacad

PN

4_‘. ‘_

L)

L

3
DY

~ v v e

—y———r e ~ LAoA Juts e Cnan S Al B2 A S TR A e R S A AT B Y AR A A M A

And given the following rule:

concrete form: x expcm * X €xpo n ==> X expo mn + n

————— e ——— i

It
\%

tempmult = tempexpo

tempexpo telipexpo X teitpadd

Since the analysis part of the rule matchkes tae
"TEMPMILT" subtree, the prograrm will become after synthesi-
zation as follows:

concrete structure: factorial 7 expo 3 + 4

———— - —————— e v -

—————————— o ——— o —

tempfact

tempexro

7/ \twpadd
3/\u

with x, m, and n bound respectively to 7, 3, and 4.

Note that the concrete form does not tell us in what
order we evaluate the different operations. Therefore, we
need more specifications if we want to have a correct inter-
pretation of the concrete rules. On the other hand, the
order is explicitly represented in the abstract structure of

the rule.

21

Tree matching is done by comparing a program sultree
with the abstract representaticn of the aralysis part of the
rule. As this process goes, the variables of the analysis
will be bound to the values given in the program, which may
be single constants or a whole subtrees.

The variables and their bound values will form the
context which will be used during the substitution of the
program subtree by the synthesis part of the rule, but only

if the matching had succeeded.

5. Synthesization and Tree Substitution

fhen a match occurs between the program subtree and
the analysis part of a given rule, we will proceed to the
replacement of this subtree by the synthesis part of the
same rule. In this process the variables will be replaced
by values to which they are bcund in the context created
during the matching process. We will refer to this opera-
tion as the synthesization. For example, given the
following progranm:

concrete form: factorial x expo 3 * x expo 5

abstract form: tempfact
tenpmult
tempexpo temfpexpo
X 3 X 4
20

P S ST PR 2 3 AP ST ES

- M aaar ol st iend Sah Sk it et e k<t Bii e St Mad-ae A ind il At S, Sl S e " e S AL e A

- s - A I T A R r_'~:.~.—-.-‘——1ﬁﬁﬁ-\vw-tﬁ'ﬁvmﬁw

they don't have any semantic meaning for the systen. This, 1

of course, has many advantages, such as to reduce the space

to store the trees, reduce the time necessary for the
matching process (i.e. less nodes to be matched), and elimi-
nate a class of errors resulting from a difference 1in the
spelling of these key words in the rules and the progranms.
As we said earlier, both the concrete fora and
the abstract form of the rules are constructed via the temp-
lates. That is, the parsing and the unparsing of the rules
is made more systematic. For example, from the 1if template
the system knows that the corresponding tree will have a
root referred to as "tempif" and three sons. Also, given
the same tree, it will be alkle to construct its corre-
sponding concrete form, by filling the place holders of
"tempif" with the values of the sons from left to right.

3. Programs

like transformation rules, programs have two foras,
the concrete form and the abstract form. The concrete fornm
is a pretty_printed text consisting of reserved words and
constants (i.e literals and numters). The abstract form is

a tree vwhose main root and subtree's roots are names of
tenplates, and whose leaves are constants. The two examples
below illustrate a «concrete form and its corresponding
abstract form.

concrete form : factorial 7 + 5 * 3
abstract fornm : tempfact r
temLadd
7 tefipmult
5 3
19

) . RIS . . N L . o
VRN SN —_ P . S T - S Y i S ™ RN Tt

J S AN
-

SR T eT e

l‘.

>

3

PF
[‘_.
|

-

v,

W Ty ey W W LY Ty ¥ T
T AR i et i) A = D A R LA e e

The two parts are separated by a double arrow to make the
rule more readable. 1In our system, we will use the concrete
form just to provide the user with a more convenient and
natural representation of his akstract rules. The following
are examples of concrete transfcrmation rules:

examplel: Zfactorial n ==> if n=0 then 1 else n*fact rn-1

example2: x expo m ¥ X e€Xpo n ==> X expo m + 1

b. abstract transformation rule

Abstract transformation rules are the same as
concrete transformaticn rules except that they describe the
permitted tree substitutions. Thus, the replacement process
is done using the kncwledge of the abstract structure of
the tree via the templates used to construct these trees.
like concrete transformation rules, abstract transformation
rules have two parts. The analysis part represents the
source tree, and the synthesis part represents the target
tree, that is, the one which will replace the progranm
subtree when it matches the analysis part of the rule.

Using examplel given for the concrete rule, vwe
now represent it abstractly as follows:

tempfact ===> tempif
n \\\\\O n tempfact
telpsub
n 1

Notice that key words don't appear in the
abstract tree because, as we will see later, they don't play

any role in the matching and synthesization process since

18

Y W G Yy Y N

ey

N T . R e~ IR DAt Raun |

Yy
[}

MAMAS G
G |] TR

a. role of the template

Y
0
[P A

‘ - The role of the template 1s to define the

concrete and the abstract models for the basic structures we

|
¥

will use to construct the rules ard the programs. They will

also rrovide a means for the user to construct syntactically

correct rules and programs. That is, in some way, templates
describe the grammar for the language used to write the
rules and the programs. Each template 1s referred to by its
rame, which must be unique within the list of templates, so

the user and the system can identify it without ambiguity.

The following are templates which are going to be used as

examples for the rest of this chapter.

¥zzs====—==============T====sS=STz==-====Tz=========k
* template name * template text * i
k===cczs===s=ss==ks==========-s=ssssss=ssscsos===ok j
* tempif * if -- then -- else -- * ﬁ
* tempfact * factorial -- * E
* tempadd * -= 4+ - * é
* tempsub * - - - * K
* tempmult ¥ ~— %X —= * E
* tempegu * —— = == *]
* tempexpo * * 2

]

I

0
>
e
o

!

I

LW

2. Transformaticn Rule

a. concrete transformation rule

Concrete transformation rules descrite the

e R

permitted rearrangements of symkols and string substitution

without using any semantic knowledge of these symbols. Each

L. SN

4 rule has two parts. The left part, called '"analysis",
- describes the source string of symbols. The right part,

called "synthesis", describes the target striny of symbols.

s

17

rLry,yr-r=
f N

R T T W R TR T T T, TR T R LT Y L T Y e T T R T R T L TR e T T T T A T R . A T TR TN T, T T T T AT e T e e

L(II. DESCRIPTION OF THE PROGRAMMING SYSTEM AND ITS

: ENVIRONMENT

A. GENERAL

!i In this chapter we will define the objects on which the
- user and the system will operate, then we will present a
typical scenario of the different steps for developing
o programs, and finally we will describe the specifications of
;‘ tte proygyramming environment and define a collection cf tocls
¢ which will be investigated and fpartially implemented.

B. DEFINITIORS

;l

{ 1. Template

{ A template, in our system, is a predefined formatted
. pattern of symbols. It comprises key words and place
FE holders. Key words are used to improve the readability;

place holders identify the lccation of variables to be
filled when a copy of the template is used to construct the
rules, or the progranms. Thus, key words affect only the
concrete forms of the rules and prograams, while place

LeA V.

holders affect both the concrete and the abstract foras.
For example, two of the possible models of a conditional]

statement can be written as:

IF -~ THEN -- ELSE -- or as: IF -- THEN --,-- OTHEEWISE i

IF, THEN, ELSE, OTHERWISE represent key words and the double

dashs represent the place holders. Notice when the template

MRS i rvvvv'ﬁ-.-,ﬁ-, "
-)
e - e [) .

is instantiated place holders can hold copies of other temp- i

L4

' lates, thus, providing an unlimited 1level of templates j
; nesting. Notice also that both forms of the "if"™ template !
f are semantically identical, only the syntax is different. ﬂ
)
[16 |
L - A
\

1

Rl

)

y .!

Y

I Y T U e S A S P e S W I U T S Y U O T DL WU U T Y NPT TN S SR S-S S - P I . LT . S |

FYy Y

these sugygested tools to determine the kxind of functions and
facilities they should provide including arn analysis of the
design tradeoffs. We will examine the interaction between
the moduies of the system and to what extert they must be
integrated, the style of communication Letween the user and
the system, and how flexiblity and friendliness can be
achieved. We will also discuss some of the implementation
aspects and describe briefly how the system is actually
implemented. Finally, we will conclude the thesis with a
discussion of the possible use of this system, its limita-
tions, and we will suggest what we think might be useful

extensions.

15

i

| Je

. J

K. §

VN EA

Such a proyramming system does not require the user to
have any kind of previous knowledge of a language syntax to
write prdgrams. Instead, he will be able to define his owyu
language syntax by means of the teaplates. For example, a
french speaking user might write the template "si -- donc --
autrement --" to describe an if statement, while a mathenma-
tician would prefer to write it as:

Wee jf --, =-- otherwise".

The templates, together with the transformatior rules,
make it possible to write programs in one fora and have thenm
printed in another forn. For example a user car enter
arithmetic expression using 1infix notationm because it is
easier and more natural, and the system will output the
expression in postfix form for evaluation or other uses.
Yet, although it is not our main objective, we can use this
programming system to translate a program written in a
special syntax to a legal form of a given language, or to
convert one program structure to another one (e.g Pascal
case statement 1into its egquivalent sequence of if state-
ments, or a while structure into a repeat structure etc.).
In fact, we can imagine many other applications: However,
in the last chapter we will discuss in more details the
possilble uses and advantages of this programming systenm.

B. APPROACH

Cur approach for the development process of this
progyramming system and its environment will consist in, a
first step, to define the different objects on which the
user and the system will operate. 1In the next step, we will
define and describe the different phases for developing tree
transformation programs and suggest what we think m@might be
the appropriate tools which will assist the user at each

phase. In the next, step we will investigate each one of

14

e o

A MANAR o n. & MM

v

—y v YTy v

The modern proygramming environment has evolved froana

interpreters, compilers, and common operating system, to
include more sophisticated and elaborate tools such as:
syntax directed editor~, structure editors, debuggers, auto-
matic program generators, pretty printers, file system coor-
dinators and others. Programming environment systems have
become an important area of research because of their direct
impact on all areas of computer science such as software
engineering, programming languages, and artificial intelli-
gence. Thus, programminy systems are no longer evaluated by
the language alone, but by the entire environment in which
progyrams are developed.

In this thesis we will investigate and implement a
friendly programming system based on tree transformation
techniques, comaonly known as abstract transformaticn. In
fact any 1language structure can potentially be represented
as an abstract syntax tree (e.g. expression, control state-
ment, input/output statement, declaration).

Tree transformation can be viewed as the replacement of
a tree, or a subtree, by another one according to the trans-
formation rule (i.e. wusing pattern matching and substitu-
tion). The description of the replacement process via tree
transformation is often easier, shorter, and intuitivly
clearer than even a description in natural language, and
permits the expression of explicit structures (i.e. does not
require parsing). Yet for a wide class of transformation
rules, this translation can be auvtomated, thus providing a
means fcr compiling abstract structures into functiouwal
prograams [Ref. 1].

Abstract trees, representing both rules and prograums,
are constructed (i.e. parsed) and printed (i.e. unfparcsed),
using what we call templates, which define the syntactic and
the semantic structure of the «concrete and abstract fcrm of

the rules and the progranms.

13

i A liad e D . A e T 4T s T Ry ® T - -
NeR A ML SN A e AR A ST I fdl il ML R Ml th A bl il Sal Sl Tl Sall Au Anfl M el il B e S S A e T

{
L

I. INTRODUCTION

A. MOTIVATION, VIEWPCINT

Although high level 1languages permits the writing of
progyrams in a form more <ccnvenient to humar beinys,
progyramming is still a rather difficult task, which requires
a lot of training. As a result, access to the comruter
remains more or less restricted to a class of trained
personal, who can do the necessary coding and debuyging.

Extensive research has been Jdone to find new ways to
make programming systems more friendly, nmore flexible, and
easier to learn and use. Thus, during the last decade, we
have witnessed the development cf new classes of proyramming
system such as: object oriented languages and applicative
progranming.

Along with this research, feople are focusing more and
more on user friendly man_machine interfaces and programming
environments.

Man_machine interfaces can be viewed as tools, which
enable the users to communicate with a computer in a
friendly, flexible, and easy way, often using formatted
natural language to present the information to the computer
in order to make it perform specific tasks. This view holds
that natural language interfaces miynt be appropriate for
people who have a high level of semantic knowledge in a
problem domain, but aren't familiar with, or are unwilling
to learn, a formal computer languaye.

Programming environments are a collection of automated
tools, which provide assistance to the progyrammer in the
different steps of the program development process (i.e. the
life cycle).

12

R Rt See
,

)

Y

v

-~

T vy

T

v T v
[

a’

L g

v

e e At ads S At Sulh Anil 2l Rl At el e o AL d st ka8 sl it s Al R Ao el A el Ao Ml el S i A i M A P P

c. accessing the rule

Like a template, a rule is referred to by a
unigue name. However, in this case the naze i1s not as
important because it is used just to ease and shorten the
search during the editing of the rules, to show the trace
during the interpretation, and to avoid printing the erntire
rule.

The alternative solution would be to access a
rule either by its rposition within the list, or sequen-
tially, or by pattern matching. This solution seems to be
more flexible, but it will result in a @more complicatel
implementation without a lot of gain, because very cften thLe
list of rules will not be very long, and the user can give
meaningful names to the rules such that it 1is easy to
memorize them . Nevertheless, it is still possible for hin

to access the rules seguentially.

As described earlier, the body of each rule
consist of the analysis part and the synthesis part. Every
time the user wants to insert a new rule, the system will

ask him to enter the name, then the analysis part, and
finally the synthesis part.

d. constructing and parsing a rule

At this fpoint, it =seems opportune to emphasize
the role the templates will play during this step. In fact
they constitute the foundation of the programming systea
because they will guide the user 1in writing the rules, and
the system in constructing the abstract trees, unparsing
them, and displaying the concrete form of the rules. Zach
time the user request a copy of the uneeded template, while
writing the rule, the system will assist him by showing the
structure of the tenplate, vith the place holders Ligh-

lighted (e.g. in inverse video), and indexed as described in

26

P S B S A AP S e L PP W P AT N, O o TN

Al Sl A Ar R A0 2R A0 Y
- AR < U=

-

T r—— SRR ARt Jieh v T ——

the previous section. At the same time the system prepares
a copy of the corresponding abstract tree (which it already
kbnows throuyh the temglate), and starts filling the nodes
with the values entered by the user at the rigat moment and
places. Thus, it 1is unlikely that the user can omit
providing the wvalue of a place holder (i.e. node for the
abstract tree). Also there is npo way for the user to
construct incorrect or incomplete structures because the
system will not continue, and will keep asking for more

values until satisfaction is obtained.
e. unparsing and printing the rule

This approach will also help the user to have a
clear idea about what will be the structure and the shape of
the abstract tree, thinygs which may later <facilitate the
debugging of the rules. However, in practice, common users
prefer to see a rather more readable and natural form of the
rules. Thus, it is necessary that the system can unparse
the abstract form and display a pretty_printed concrete
form. This process is quite simple and straightforward,
since all the system has to dc 1is to get the appropriate
templa te and just £ill the place holders in the same order.
However this raises some problems to be considered care-
fully. For instance, suppose that the user makes some modi-
fications on the template affectiny their structure, or
completly delete some of then. Obviously,the system will
not Lte able to unparse the tree, or may even give a
completly unexpected concrete fcorum.

The situation is similar to the mine expert who
tries to take the mines out of a mined field with a modified
plan. O0f course we can imagine what will happen.
Therefore, it is important that the user provide the systen
with the appropriate set of templates during the unparsing

process, and if he modifies thes on purpose (e.4y. to charnge

27

T e ath et Sut et et s et M Rt e i e R IR R SN I AR AR A R N S e R N N N) w."—.'.r_-.‘.- ,.-._.-._.- _1

-‘l the order of the place holders, or improve the readablity),
._ he must be sure that this does not <create an inconsisterncy
:‘T tetween the abstract tree and the structure of the template.
However the system must assist tae user, arnd tell him when-
ever it detects such inconsistercy, or give a special signal
when the appropriate template is not found (e.g. precede the

Fi unparsed subtree by a special character).
R f. Writing, and editing the programs

Programs are created and written in the same way

as the rules are, except that a program includes only one

part. like the rules, prograas have a concrete and an
abstract <fornm. The concrete form is what the user «can
display and see on the screen or printed on the paper. The

abstract form is the cérresponding tree constructed by the
system at the same time the program is entered by the user.

The program is built wup by putting together
basic sulttrees. The structure of these basic subtrees is
given by the copy of the tempiate, explicitly requested
(i.e. using its name) by the user, and whose place holders
are filled with constants, variable names, and other temp-
late names.

The advantage of such approach is to siamfplify
the parsing process, since the abstract tree is constructed
in parallel with no scanning and token recognition required.
Also, it will guarantee that only correct programs are)
entered, because the system will show the template

rejuested, and the wuser is required to fill all the flace
holders. Thus we can think of the templates as a grammar

o moea-m 2 4

for the language and we are using a syntax directed editor.

Programs can be modified, displayed, saved and

restored, pretty_printed on disk or on paper, and deleted.
It 1is also useful that the user can move around the

different parts of the program such as to go from a subtree

. MR A & X A A

28

PR R Y

VT P g = P R, W P S T s P I . s R . PV S, PR U YD . S |

Sl Tl 2Rl S S

i ‘
b

—

LA ania

R . SaEAat i S R S AR AR B A S T L e A e e e T T T e A e

to another in the same level, zcoming in and out, searching
for a given node, and altering the value of a node, espe-

cially during the debugging process.
g. interpreting prograsms

Programs are interpreted in their environmental
context constituted by the templates and the rules. Thus a
given program can be 1interpreted differently in different
contexts. However the interpretation process itself is
independent of the context. It consists in the successive
applications of the user's and the built_in transformation
rules.

The order of selection of the rules is seguen-
tial. However, conceptually +the order in which they are
selected and applied should te irrelevant to the final
result of the transformation. A rule is applied to the
program when its analysis part matches a subtree of the
program. This will include: the matching itself, variable
binding, synthesization and substitution.

The interpretation will end when no rule can be
applied, then the result will be displayed. 1In addition, it
should be possible fcr a user to request that the result
will be sent to a disk file, so it can be printed or reused
for further transformation with a different set of rules.
During the interpretation the user might be interested in
having the trace of the transformation, therefore the systen
must provide an option which allows visualizing the names of

the applied rules and the intermediate results.
h. debugging prograams

In order to assist the user in debugging his
programs, we need facilities which make it possible to show
the rules applied for the transformation, and to perform the

interpretation step Ly step, or until a given rule is

29

A VR ST Sy O WY ST

AA-lk'-“‘ "‘...

") NG,)

oW, 1® DL ORL YRR

. ...

ﬁ[.v_fY'.'. P

N QI SE sne o Jun 2an oy ad

PEPPPp———

~~~~~~

applied, or a given situation arise, or a condition is met.
The system should be able to answer specific questions, such
as which rule is never used, or the nuaker of times a given
rule was applied, or why a given rule can rnot be applied to
a given subtree of the program (i.e which nodes «cause thLe
failure of the matching process). The system must also
detect some classic errors such as undefined node, nonnu-
meric argument for arithmetic operation, and other type
checking. 1If an error occurs during the interpretation, the
user is informed so he can stop the process, ask to show the
result, or alter the value of a node and ask the system to

continue.
i. communication language

Users conmunicate, via the screen and the
keyboard, to the system by issuing commands using formatted
natural language.

A command can be writtem on one line, or broken
into a sequence of short subcommands. Thus the system will
keep asking for additional information until it is able to
execute the command or issue an error. This approach is
based on the fact that a user who is familiar with the
system will be able +to handle 1long and complex conmnands,
whiie a new user would prefer to be guided by the systen,
and see the same commands broker 1into a seguence of sukcom-
mands. No matter what the user types he should get a clear
answer. Also, helr must be proposed each time the user
seems confused. Thus, at one extreme a user can memorize the
entire ccmmand, and at the other extreme he needs just to
know the name of the command or even just to request help.
Help must be provided at the different stages, but only thke
relevant information should be given, because it 1is often
difficult for the user to fird the information he needs

within several payes cf displayed help.

30

2 okl B el o sdlR A

aablN A Lo ]

Lo N U e

e B b i

PR

o

vy

PRSI Py

PN




T e Y S e T T T Y YT Y AT RETE RN TN RN R R ey T e T TR T T e T e T e T T L R e R R e e R

2. Environment Tools

"

OQur goal is to design an iateractive progyranmming

environment which surports the proyramming system and meet
the specifications described in the previous sectiorns. Thus

we will investigate, design, and partially implewment the

following tools:

1. A template editor
2. A rule editor
3. A program editor

4. An interpreter

5. A debugger

3. Integration ]

It appears from the specifications that the [~
different modules of the system are closely related with a
lot of interactions. Many resources will Le commonly

shared, such as templates (used by all the modules), rules

(used by the rule editor and the interpreter), programs
{used by the program editor and the interpreter). Many
functions will be used by more than one module (e.g parsing
and unparsing the abstract trees, searching for a giviny

rule or template, loadiny and unloading lists of templates

rules and programs, ard many other utilities).

In addition, we thkink it is important that users can
switch rack and forth between modules 1in an easy style
without being forced each time to do the necessary file

]
loading and unloading, and all the other routines to get the g

T '-‘ T ——
-

module started.

In my opinion we need an 1integrated system which

provides enough security to Lprevent the user from making
unrecoverable mistakes, and which gives clear and simple
traffic indications so the novice «ill not 1lose his way
through the modules. In summary, a secure, friendly, and

flexible integrated environment. j

1 31

| R T T T S T T T T T T



e A i A i A S ek i S e rogy g ERaAE Sl e A e S A A ek sl S lh jengt Nadi i Saadt ot T rrT————— r_*vw

4 -
s B
t ;
g !.
- .
F 4. Implementation Environment :
“( our system will be igplemented orn the PDP11/730 :

running a Unix system. We will wuse the Pascal language

LB |

utilizing the Berkeley compiler. However, in order to main-

tain a certain portability, we have used only standard

features.

— "H—'—"ﬁ v

(RPN, T

MRS H )
D _J VUSRS . Y W

Narray.. 2

- d Sy

rerarey e

Al

i

32

T ey, Ty W

AP i




Ty
DR
'

R

v

O

I AN SR auih A o

III. SYSTEM DESIGN

Figure 3.1 vrepresents the general architecture of the
programming environment. The sclid arcs represent the data
flow, while the broken arcs represent the control flow.

The environment is built ufp out of a number of modules
and files. The modules are the template editor, the rule
editor, the program editor, and the irterpreter. The files
are provided to hold the templates lists, thLe rules lists,
the programs, and the results of the interpreted programs.
Note that, except for the template lists, for eacn catejory
of list we need two files: one for tine abstract form used
exclusively by the system during the load operation, and the
other one for the pretty_printing of the concrete form which
provide a readable ccpy for the wuser and can be printed

using The UNIX command.

A. THE USER INTERFACE

1. Description

The user interface 1is the first layer of access to
the systeun. Its function is to initialize the different
pointers to the lists, load the built_in templates, provide
a gerneral Lelp on how to use the system and navigate between
the mcdules, yive the prompt to the user so he carn select
the module he needs, and finally to make sure that every
thingy created or modified during the session has been either
saved, or approved to be destrcyed before the user can exit

the system.

33

Py Y




i et A T St ol S At it e A S S A A L 2 D Rt e

| |THE TE4PLATE TEMPLATES THE RULE I
t Lp EDITOX LIST EDITOR <

é | ! |
| RULES |
| LIS1 |
| |
[ ] | |
PROGRAMS
| LISTS ' 1
I I % |
. } | ,
THZ PROGhAM KESULTS THE
G . — <-! Y
EDITOK LISTS INTERPRETEER
——
TEMPLATES o] ABSTEACT ABSTRACT .
[
- FILES PRCGRAMS RULES
‘P ]
] CONCRETE CONCRETE ¢
) PROGRAMS J RULES
]
] \/ \_/ : \_/ »
Figure 3.1 General Architecture of the System. ]
. 3y
[ ]




e
2. Module Selection

Once the prompt (-->) is given the user may select -
. . .. @
running either the template editor, the rule editcr, the :
program editor, or the interpreter, by typing the name or R
the module. These are, respectively: TEMPEDIT, RULEZDIT, .

PGMEDIT, and INTZRPRET. After the selection is made, the

3. Getting Help

The user interface provides a general, sinrple help
facility which gyives user the essentials about the functior
of the system, hLow to select the agpropriate module, and Low
to exit the system. This help may be obtained by typinyg the
HELP ccmmand. However, for the user's convenience, the
system will offer help at the beyginniny of the session or

whenever an incorrect command is entered.

4. Ending the Session

The user can €nd the session and exit the system by
typing the command QUIT. But, as a security measure, the
system will check if there are 1lists of any kind cfedted or
modified during the session but not saved. If such lists
are fcund, the system will display the names of these lists,
and ask the user whether or not he wants to save then. A
“NO" answer will confirm the guit and causes the system to
terminate. On tkhe other hand, 1f the answer was "YE3" the
system will re_issue the prompt signal, but it remains the
responsikility of the user to save these lists by using the
appropriate coumand offered by each module.

An alternative solution would be to let the systen
make the save automatically when the user answers "yes",
But, there are at least two reasons why this solution is not

preferable.

b a PUPP Ty SR W e o o B P oA, = A B A

Ta e -4" [

1 L
Y SRS

e

h 1
Y A




[ar SN AN AP )

-+ v e naats Tl Caams "SRt Jhoih Eauin -Shadh 2L Jhadi Tiadl ~ M Mt il "N Y ~E B N ST U A T

First, the user aight not need to save all of these
lists, Fkut the system can not make such a decision unless
explicitly told by the user. This will involve an extra
interaction between the s;stem and the user, which turns out
to be the same as the first solution.

Second, and most important, the system will use the
list name as file name, which can have a bad consequence,
since any old file with one of these nawes will be automati-
cally replaced by the new one, while the user may still need
it.

Iin our desigyn, as we will see later, the user will
Le given the <choice to assiyn the name of the list to the
saved file (i.e. overwrite the old file), or 4give a new
name (i.e. create a new file). This allows him to have a
family of files for a given family of applicatiouns.

We think the first solution 1is more flexible, more

secure, and even in some cases more efficient.
5. Error Hanrdling

An error occurs when the user types an 1incorrect
command. That 1is, a command other thanm tempedit, ruledit,
pymedit, interpret, help, or exit. In that case, the systen
will ecno the 1input command and print in inverse video the
error uaessa je. It will also offer help to the user and

re_issue the prompt signal for a restart. For exanple:
"temped: incorrect module selection"

"for more information please tyre help"

36

P I IR

i

=N s

PUE WO EEIPR)

- A_JJ‘A_AI‘" hhe e a e ‘e a2

,



A T A A I A AP AP R S A I R R N e A S

B. THE TEMPLATE EDITCR

E . 1. General Description

Figure 3.2 represents the architecture of the temp-
late editor. The module is made of 11 functions which

operate either on the list as a whole entity or on irndi-

, vidual templates.

As we can see, many lists can be present simultane-
ously in the menmory. However, The system and the user will
edit one list at time (i.e. the current list). The user can

I switch back and forth between the different lists in an easy
style with no load or unload reguired. The possibility to

work alternatively on several lists 1in the memory adds aore
power and flexibility to the system. Lists or part of lists
can be developed in parallel, perhaps for different applica-
tions. Yet, we wiil be able to take two lists, created by
different persons, partially change them, and merge them to
form a unigue list to be used for a new application. This

facility can also be helpful during the debuygging process

”

where we might need to try diifferent versions of the same
templates to decide which ones give the best results.
As a consequence of this design decision we need to
! include in the system features to keep track of which list
is currently edited, what are the lists currently present in
the memory, and for each one what is the currert tenplate.
We need also facilities to move from one list to another and
to remove a list frcm the memory. Tuis also will reguire
more checking and security measures anl will result in more
complex commands since each time we reyquest an operation or
a list we have to specify explicitly or implicitly (i.e. ¢ty
default) on which list we want to perform thwse operations.
Of course we could decide that all operations
requested will be done automaticaily on the czurrent list,

but then we lose the flexibility advantaje because the user

37




STAST EXIT
COMMARND INIERPRETER
CURERENT EELP 1I5T
LIST
HPIN INSERT
’ LIS ¢ ‘
KEMOVE . EDIT
LIST
FESIORE SAVE MERGE
TEMFLATES
FEILES
Figure 3.2 Architecture of the lemplate Editor.
38




Rl i)

e Wy e R e e e T T o e e DRt S Y A A I - v

will ke required to use an open command inL order to set the

list he wants as the current one. This turns out to le 1inL
the user's view eguivalent to a loal, which we waunt to
avoid.

In our system we will experiment with ©rcotn

approachs. That means we will implement the template <dlitor
suchk that we can have several lists in the memory, and
izplement the rule editor with the possibility of having
only one list at a yiven tinme.

To xkeep track of which 1list and template 1s lteiny

eldited, the system will maintain two pointers. Tre first
one [olnts to the current list, the second points to the
current template within the list. The current list will be

the last ole processed by any operation reguested Lty the
user, except for remove, where the current list will becoze
the next list, or "nil" i1f the removed list was the last.
Likewlise the current template will be the last ocne inserted,
or displayed, or the one which follows the last one deletc<d,
or "nil" 1f the one deleted happened to be the last terplate
in the list.

The initial value of these ©pointers is "ril".
However the system shculd be atkle to distinguish between an
end of list "nil'" and the 1initial "nil" {i.e. empty list),
aud make it «clear to the wuser by giving an appropriate
messagye such as "current template is nil: 1list is empty" or
"current template 1s nii: end of list reached”. At any
moment the user may 1injuire about the current list anld teap-
late, or about what are the lists currently in tlhe memory
witi the number of templates eacl one contains.

The l1ists which are created or modified duriny the
session aust be protected against accidental deletion. Tihis

protection 1s removed as soon as the list have been saved.

o L _,.i

. SV .. ] NSy

- |

i dacaiatal

L e . -, A N . ..

>

d




Nevertheless, to prevent the user from acciden-
taliy removing a list created or modified durinjy tne cu.rent
session Lbut not saved, the system will check the upd..e flay
of the yiven list, and in conseguence it way issue a warniny
message and Jgive the control lack to the wuser so he can
abandon the operation or confirm it.

Table VIII shows the dJifferent formats of the
command aud the resulting dialogue between the user and the

systen.

TABLE VIXYI

Formats of the Command Remcve and System Responses

*::::::::::::::::'_'.:::::::::::::::::::::::::::::: :::::::::::*
* *
* forpmat # 1 *
¥ o *
* *
* REMOVE <LISTHAME> *
* *
* format # 2 #
* - *
* *
*  REMOVE *
: input listname to remove: <IISTNAME> | CR :
g g %
* *
: { the following dialogue will take place if :
: the given list to remove has rnot been saved } :
: WARNING! <listname> has not been saveld :
: do you want to continue yes/no : YES | NO *

*
: { @ "no" will cause the abardon of the operatiorn } :
: { a "yes" will let the system remove the list } *

*
*::::‘_—:::::::::::::::::::::::::::::::::::::::::::::::::::::*

. error checking

Before starting the execution the systenr will go
through series of controls to deteraine 1f the command can

Le executed properly. The types of error which miyht result

[$al
(9%}

9,

e,




TABLE VII

User System Dialogue before a File is Opened

WARKNING ! 1f no such {ile exists the systemw will acort
and the content of the following list(s) will Lte lost
{ listing of the lists not saved }
do you wish to save them yes/no : YES | NO
{ @ "yes" answer will cause the abandon of the restore
opreration so the user can use the command SAVE to
save the lists he wants and restart the operation }
{ a "opo" answer will confirm the rejuest and let the
system attempt to open the file and hopefully respondi

<listrname> restored from file : <filename>

3 36 3 36 3 3t 3 3 6 46 3 36 36 3 3 3 3 3 3 3 H H #
36 3 3 3t 4+ 3 36 3 30 p 36 36 36 36 3 48 3 3 3 36 3w

e. removing a list

This utility will allow removing a list from the
memory, and freeing the occupied sfpace. This function may
not appear very necessary since lists which are no longer
needed may simply be ignored and not saved at the end of the
session. But, 1in an integrated system like 1in our case,
needs for memory space Jrow so rapidly such that a memory
clean ur becomes necessary.

Thus, without this utility, the only way to
remove lists which are nro longer needed and to make the
space occupied available, 1is tc save whatever we will still
neec, exit the system, and start all over again with a clean
and reorganized memory space. This, of course, will cost
much more time than executing a simple commani.

The command to e€xecute this function 1is:
REMQOVE, followed optionally &Ly the name of the 1list to be
removed. However, The system will remove the curreut list

when no name 1s specified.

52




a2 A L L . B e

. conclusion

It seems clear that the first solution cifers
the npaximum flexibility and security. There 1s no possi-
Lility for the user to lose the control or the content of
the memory because of a misspelling in the file name. But,
in turn it rejuires more work to be implemented, and extra
time for the execution of the function, since the systen Las
to check the directcry, even if the user had input the
correct file name. Also, this solution will not ke general
because the routine will not work in a different environment
with a different directory organization.

The second soluticn requires less work but it
does not provide the maximum security since, from experi-
ence, Wwe know that users get very quickly tired of warning
messages and stop giving them any attention which, in this
case, may cause the loss of imfportant information and hours
of work.

The third solution ofiers enough security evenu
though we can still lose the ccntrol, but since this will
happen only at the beginning of the session there will ke no
loss of memory content. But, on the other hand, it will ;ut
some inconvenient restrictions, and could be a tinme
consumer.

In our system we will use the second solution
because it represents a reasonable compromise Letween the
efficiency, the amount of work for the implementation, the
flexibility, and the security. Also, 1t is a general solu-
tion which will work if the system is run in a different
environment.

Table VII illustrates the interaction Lbetween

the system and the user for the second solution.

51

Ao 2o g - - L. PSR U W S W YA B _ . A WP I L) i N

FarIN

e .
.




RAR AN SN A

o &

. solution 2

The second solution would be to let the systen
save automatically the lists created or nodified durinyg the
sessiocn before it attempts to oren the file. Thus, 1if the
user loses the contrcl because c¢f an open failure, he will
be able to use these file copies for backup.

Although this solution 1is feasible, it will
affect considerably the efficiency of the function and may
pernaps encourage the user to be careless when he enters the
command. Therefore it is preferable to make the save rather
optional. That is, when the user requests a restore opera-
tion the system will send a warning message to remind hin
about the possibility of losing the control, and ask him if
he wants to save the lists created during the session. The
user can either accept the offer and save the lists he wants
to, or change the file name if it was incorrect, c¢r cornfirnm
the command in which case the system will go ahead and

attempt to open the file.
. solution 3

The third solution reguires the user to declare
at the Leginning of each new session the files which are
likely to be loaded. Thus, there will be no risk resulting
from losing the control since there is nothing in the memory
yet.

The problem is that the wuser has to know in
advance the input files he will use, which is not always the
case. Also, he will not be able to restore files created
and saved during the session unless he exits the system and
starts all over again, which is not practical, and may take

a rather long time to do.

50

P W'Y




TABLE VI
Error Types and the Corresponding Messages for Restore

*:::::::::::::=*===:=:=:=:=:===::::::::::::::::: T Zoo=Do====%
* * *
: error type : €rrLer messaje :
oo s=S=S==Z=--s XSS S-S S=S=S=SCS oSS S-S ST ESCS S-S SS-—=S=ZS==—=D==-=—=========%
* * *
* missiry space* _ *
* * missing space aifter the template nanme *
* after t.name * *
* * *
B e e e e e e e *
* pissing ':' : missing colon after the teamplate name :
*

B e e e e e *
* missing siace* *
* * missing space fefore template text *
* before t.text* *
* * *
e e e T e T TR *
* * %
* eof reached * . *
* * unexpected end of file *
* but no escape* *
* * *
*::::::::::::::*:::::::::::::: ZTEST ST o ST =oorosS=SCSo==T === =====3%X

file name, or save whatever he has in the @memory and exit
for more checkinyg, or simply abtandon the operation and start
a Jifferent task. Unfortunatly, this solutior presents some
difficulties due to the implemeptation environment.

First, in the Berkeley Pascal environment, it is
not possible for a user's program to get back the control
wheli a "reset" fails. Instead be will get an error message,
Lut the «control is automatically returned to Unix without
having the chance to save the content of the memory.

Second, Pascal, 1like most languajes, does not
provide an instruction which allows one to check 1if a file
exists before we attempt to open it.

Tlieretore, in order for tne solution to work, we
must write o special routine. This routine will read the
directory and return a flag whick «can bLe tested to find out
wvhether or not the given file exists, anl subsejaently
either attempt the open, or 1issue an error message tut

return the control back to the jrogran.

49

'
P

.
NS

9o

A s A ‘a2 u.g'-‘_.«.




N/

D DA AN At A B At AR S A Y - e Pl Fadii AR AR e R i B A 3 -'1'}

TABLE V

Format of the Ccmmand Restcre and System Responses

format # 1

RESTORE <FILENAHE> <LISTNAME>

format & 2

RESTORE <FILENAHME>
input listname or cr if using same name:<LISTNAME> | CE
format & 3

RESTICRE
input filename: <FILZNAME>
input listname or cr if using same name:<LISTNAME> | CKk
{the following dialogue will take place if the lists
already exists }

WARNING ! <listname> already exists in the memory
do you want to overwrite it yes/no : YES | NO

{ "yes" the system will overwrite the o0ld list }

{ "no" the system will continue the dialogue }

do you wish to ygive another name yes/no: YES | NO

{ if yes the system will ask for the new nane }
input listname:<LISTNAME>

{ if no the system will abandon the request }

A A AR E RS SRR ERE RS R REERE R EEESEREERRESEEERERKEJRSERZJSEZEJEJ;]
o 3 3t e 3 4F 3t 3 30 36 3 36 I 3F 3 3t 3 3 36 3 36 3 3 3E I 46 3t N 3 b 36 I 36 36 3F 36 36 3 3 3k 3k 3 3 3t 3

to issue an error messade indicating that the file does not
exist on the disk, and then yive the control back to the

user, so he «can either restart the command with the right

48

1
.
1
i
{
|
. solution 1
The first obvious sclution to this case would be

L. - - a7 e A . .
a . a A m e g I W T U ADI- UG WPe. P T O SN IO U U S | ol Pore ek




T T A T W . R A St Bt SRR P R ————— R W L B an aave

d. restoring a list

This uwutility allows the user to Lloac 1L ths
memory files containing templates. The commanl w:ici Cdaseo
the execution of this function is: RESTORE followed Ly thc
name of the file (filename), tollowed Ly the nare tou be
assigned to the list in the memcry (listname). The name oI
the list may be omitted in which case the name of the file
will be assigned to the loaded 1list. However, if the naae
has been already assigned to an existing 1list, the systea
will give a warning messaye and wait for a response fror the
user who may either order to overwrite the old list, or yive
another rname, or quit for further investigation.

Table V summarizes the different formats of the
cormand, and the resulting interaction between the user and

the system.
. files created using other editors may be loaded

Files created using editors other than the temp-
late editor (e.g. ex) may also be loaded by the restore
cormand. But, in that case, it is the responsibility of the
user to make sure that the files have the appropriate struc-
ture the system expects to find. Therefore, files which are
not formatted the way we have described in the ©fprevious
subsection will cause an error during the loading, and the
abandonment of the ofperation.

Table VI shows the different error types which
may occur during the restore operation with the <corre-

sponding message which will be sent to the terminal.

As we notice, we did not include in the table
the case where the specified file 1is not found on the disk.
The reason is that we are faced with many alternatives to
deal with this problen. In the rest of this subsection we
will present these solutions, and discuss the advantages and

disadvantages of each one.

47

v e WV

e B s e E ot o s . o a oa T

R Y

e a @ . @ 8

.0, .9

'_4!.&

A!A i

‘s A. £a ..‘;_




the 1ist and its templates in the memory during the loading.
This structure will be a simple mapping of the memory list
onto the disk file. Thus, template files will have a name
vhich includes a maxiwmum of 10 characters, and will contain
the templates in the order of input.

Each template is composed of 10 characters naae
(if necessary completed by trailiny blanks), followed by the
body written like a conventional text, but terminated by the
character escape. Figure 3.3 shcws a sample print of a temp-
late file.

tempeval : eval —-

tempexypo : -- expo --
tempif : if — then -- else --
tempfact : factorial --
tempmult HE

tempadd e

tempsub e - -

tempdiv 2 ==/ -
tempequal : -- = --

templess R
tempgreat : -- > --
tempevcon : evalcon -- -- --

Pigure 3.3 Printing of a Template File.
Notice that we have inserted a blank, a colon,

and another blank between the name and the text to make the

separation clear and the file mcre readable.

ué

PR SN A SR ST SRR . DR P,

P S I WY

o

. . .- . . . [ ’ ’ .
* i N E— . . . . . . . [ L .
h. PSS Vs, N e JO) PPN, FISDERITARN J e

+ P
PR AR A




LAl NS SAIL R S st SN ua arde et mied SN adREEAAr . e A P ey it kel Al SR M daatt Aart Mt i ] 0 T Ty TR

TABLE III

Format of the Command Save

*::::::::::::::::::::::::::::::==:=====:=====:=::::::::::::*
* * :
* format # 1 * ]
X —mmm—— *
* SAVE <FILENAME> <KLISTNAME> : :
*
* format # 2 * _._:J
* ——ce—o % |
: SAVE <FILENAME> ; g
: enter the name of the list: <LISTNAME> | CR : -
* format # 2 *
* *
* e e * ]
*  SAVE *
* e * 3@
: enter the name of the file: <FILENAME> | CR :
: enter the name of the list: <LISTNAME> | Ck : ]
*:::==============::::::::::::::::::::=====================*
b:.
TABLE IV
Error Types and the Corresponding Message for Save ]
o
* * * ;
: error type : error message : J
* no list * . ] * j
* * can not save:nc list in the memory * -
* in memory ¥ * v
* * * 1
O S Qg S x :
* list does * . X * .
* . * <listname> : 1is not found % .
* not exist * * -
* * * a
e A e o * .
: current : can not use current list: value is "nii" : =]
: list is nil : please use open to set current list :
. -4
. structure of the template file ®
[ B
! A template file must have a structure which ]
i allows the system to reconstruct easly and systematically 1
l ]
K




T

TABLE IIX

Error Types and the Correspcnding Messages for Edit

* . *
: error type : error message :
* * *
* no list in * ) *
* * no list has been created or restored *
* the memory * *
* * *
e T T K e e e e e *
* * *
* list does * . ) *
* . * <listnaame>: list not found *
* not exist * ¥
* * *
T K e e e e e %*
: empty 1list : <listname>: list is empty only :
* * insertion is allowed *
e e e e e e *
*template does * *
. * <templatenamed: template not found *

* not exist * *
* * x
e e e e e T TR *
: current list : current list is nil use the open *
&

: is il : comrpand to set the current 1list *
*

* * *

default values as resprectively the current 1list and the naame
of the list. That means, if the file name is not specified
the system will assign the name of the 1list to the new file.

Table III1 shows the different fcrmats of the command.

At the end of the execution the system will give
a message to indicate that the function had been performed
progerly. In addition, it will prict the name of the list
saved, the number of templates it contains, and the name of
the newly created file. Example:
"list1 containing 12 templates =aved as filel"

if, on the other harnd, an error was detected the
command will not be executed, and the user is notified with

the appropriate error messadge as indicated in table IV.

44

i

K. TR

e @

@
a sk _— -

vy

a

.,AA_‘..‘_



K . .- 7

. Preliminary controls

Before starting the editing session the systenm
will go through series of controls to check if the given
list and template exist, if the 1list is not empty, and if
the current template is not "nil" (i.e. end of the list
reached) . When no error occurs as a result of these
controls, the system will ackncwledge the request and print
a header with the name of the list and the number of temp-
lates it contains, and then start the session by displayinyg
the template which <corresponds to the starting point. To
exit the edit mrode we need to fress the escape key, which
will return the control back to the command interpreter.

However, 1if the system detects an error durinyg
the preliminary controls, it will echo the command and print

an error message as indicated ir table II.

C. saving a list

In order for the user to have a permanent copy
of his lists of templates which can be reused or printed, we
need to have a function which allows him to save a list on a
disk file in readable and pretty_printed form. Therefore,
saving a list will be a guite similar process to the display
except that we need tc write all the templates of the list
starting from the first one and finishing at the last one.

The command to execute the function will be
simpler than the edit coamand, since all we have to specify
is the name of the 1list and optionally the name of the file,
if for some reason we want a differeat name (e.g. a file
with the same name already exists and we don't want to over-
write it). The syntax of the command is: SAVE followed by
the file name and the list name.

Both the name of the list and the name of the
file may be omitted. 1In that case, the system will take the

43

O T8

Le s a s

AR

Ao ‘e s

ot e

- b
. DN




T

O

M dat A WA el Sl Sl IS And AMEIMC SN AP UL S Suet i M N B IaAnm ARt i At A AR A et

name of the list and the starting point for the editing.
The ccamand can be typed on one line or broken into a
sequence of subcommands controlled by the system, which will
assist the user by asking for the remaining information
needed to execute the command. The name of the list can be
omitted in which case the system will take the current list
as default value for the name of the list.

The starting point of the editing can be the
first template of the list, the last template, a user speci-
fied template, or omitted, in which case the default value
will be the current template of the list. Table I summa-
rizes the different formats of the edit command. Thke inputs
are shown in capital letters while the system responses are
writter using small letters. We will use this same notation
to represent the dialcgue between the user and the systea.

TABLE I
Format of the Command Edit

format # 1
--—-_EDIT <LISTNAME> FIRST | IAST | TEMPLATE | CR
ee. €dit mcde ...
format # 2
—--_-EDIT <LISTNAMED>
enter starting point: FIRST | LAST | TEMPLATE | Ck
es. €dit mcde ...
format # 3
enter listname to edit: <LISTNAME> | CR
enter starting point : FIRST | LAST | NAME | CR

ees edit mcde .. -

LR R R EEEEEEEREEESEREREERRESESEJS:ESEXE]
3 3t 3 3 W M 3k 3 3 3t 3k e 3k gk 36 36 3 3 3 e 6 3 3 3

L P T I Y T Y W Y e L U . U T T T W Ty - . Lot FTN SN D W W

AP |

4
L
B




it g "l e Al i AP T i lndina *ai i ¥y L L T Y R T R e T e Y e . ey - e -y Tow ey

create a new list or locate an existing one. It 1is up to ‘:
the systex to determine waich, depending on whether the list ;
already exists or not. ol
Opening a pew list wili involve the following 7]

actions:

. Create a new list entity

. Assign the given rame to the list S|

. Set the template counter to O (i.e. list is empty) :

. Set current list = the new list

. Set current template to "nil”®

Locate an existing 1list will involve the following actions:

..

. Set current list = the given list
. Set current template = first template of the list
or "nil" if the list is empty
List names can corntain from 1 up to 10 printatle '.4'
characters, which seems to be a reasonable size, and can be
changed easly if it happens to ke insufficient. MNotice that
it is not possible to have two 1lists in the memory with the
same naae. R
The function will be executed by the command
CPEN followed by the name of the list. Once- the command is
executed the system will issue cne of the following messayge:
1. <listname>: new list created (i.e. list did not exist) ]
2. <listname>: contains x templates (i.e. list found)

3. <Listname>:illegal name (i.e. contains nonprintable char)
b. editing a list 1

The role of this function 1s to start the

editing session on the given list. Editing will include
( operations such as: insertion, deletion, search, modifica-

tion, and displaying. All these operations will be

o, -

performed on templates, therefore we will describe and -

s discuss them 1in more details in the next section. The

PUPEPR U

{ editing mode is started by the command EDIT followed by the




‘

B
L
L
y
2

Y

| S Zn an et st s 0 A diE & g Ant 4

2. Starting the Template Editor

The template editor is given control by the user
interface when the command TEMPEDII is selected. The mcdule
will display the prompt signal (TE-->) to inform the user
that he can start entering the commands.

3. Command Interpreter

The role of this function is to accept the user's
command, identify it and immediatly transfer the control to
the arppropriate function for analysis and execution.
However, if +the command is nct recognized the following
error message will be sent to the screen:

"<Command>: is not a template editor command

please restart, or tyre Lelp for more information"
4. Help

The user may ask for help, at any time the prompt
signal is displayed, by typing the command HELP. However,
like it was explained before, only the part concerning the
template editor will be displayed, so it will be easier for
the user to locate the information he needs.

5. oOperations on Template lists

In this section we will describe the different
facilities provided to manipulate lists of templates as a
whole entity. Also, we will describe the format of the
different commands we will use to execute the different

functions.
a. opening and locating a list

This function will allow tke user to initialize
a newvw list or 1locate an existing list and make it the

current one. Basically, we will use the same command to

40




P

-

from these controls with their corresponding messages are

given in Talble IX.

TABLE IX

Error Types and the Correspcnding Message for Remove

% * *
: error type : error message *

*
* * *
* no list in * ) . *
* * can not remove:no list in the memory *
* the memory * *
* * *
Hm m e — e ettt *
* list does * . . *
* . * <listname>: 1list not found *
* not exist * *
* * *
T e e e e e e e *
* * *
: current is : can not use current: value is "nil" *

x
I nil : use open to set the current list *

*
*::::::::::::::* ST oCSTSSCS TS SIS oSS oSS SoSSS STz ===z==%

f. @merging lists

This function takes two lists and forms a unigde

one by simply concatenating the second list with the first

one. Thus, it is fpossible tc have duplicate templates ia
the resulting 1list which of «ccurse shoull not  lLe ailoewel.
However, instead of stoppinyg the zerje o, «eratio. 4. .00l aa
a duplicate 1is found, the systeu w.li noti. *i. inet by
displayiny the name of the Jupilciate tem;lst, st e
continue until the merginy is ccmpliet i, I ., b e,

the responsibility of the user to tare .. o

action to eliminate these duplicate.

The command to execute tne Gei o TR U T RO
MERGE. TFollowinyg the name of the commanld, t.o 1 0 Tuv iV
54

Ny N Y T Iy U . T T T T

"



Chin SEa 25 gl atens. AN dand

Tt

the names of the first list, seconl list, and the resulting
iist. Like the other commands, these names may ke omittel
in wihich case the system will take by default the current
list for every nonspecified list. dowever, 1in any case the
first list and the seconl list must already exist, while tae
third list can be either a new list, or an old list to be
replaced. The latter case is treated as an overwrite.
Thus, the system will Jo through the same kind of irterac-
tion with the user tc get, if necessary, the confirmation
for the overwrite.

The different formats of the command witl the
system responses are shown in Table X, while in Taktle XI we
summarize the different types of error which may occur

during the controls preceding the execution of the command.

g. listing the template lists

This wutility function will give the user the
listing of the template list currently present in the memory
with the number of templates each one contains. However if
there is no list it will display the message:

"no list in the memory"
the command for this utility is : LIST

h. inquiring about the current position

very often, after hours of work with the systen,
the user wmay get confused abhout which list is the current
one. Thus, the system provides a utility function which
gives him such informations, and even tells him about the
currert position within a list. The command to request this
information is: CURRENT. The system will respond by one of

the messages given in Table XII.

55

PN NP, WY W DR S R Gy DY S GRPUE S WPy I DI Gt P WP YUY WY P SN U U YT VU S VUT SO ¥

AP

0. .

R

il
L
. @,

P PR
B .
PR A

Iy Pl S S S B BTy




T T P P T — 5 e~ A i S AN A AR i FPUCHITIVWTR VN TN VIVIC WUN

TABLE X

Formats of the Command Merge

MERGE <LISTNAMEID+<LISTNAMEZ>=<CLISTNAME3>
format # 2
" MERGE <LISTNAME1>+<LISTNAMEZ>
input listname3: <LISTNAME3> | CR
format # 3
" MERGEZ <LISTNAME>
input listname2: <LISTNAMEZ> | CR

input listname3: <LISTNAME3> |CR

LE R R R R EEREEREEREER B XS R EEERESEREERXRSEREREEYEENR RSN

I EE R ENEREERESEENEEREERERERERSSEXREXRSEJEHZRJZNEZERS]ES .

format # 4
MERGE
input listnamel: <LISTNAME1> ]
. . ]
input listname2: <LISTNAMEZ2> E
input listname3: <LISTNAME3>
® o s 0w e soovoe U
{ listing of duplicate templates found } ]
. : . 1
<listname3>,containing x teaplates created B
f 6. Operations on Templates i
b
' In the previous section we described and discussed )
H each of the operations which can be performed on the teap-
' late lists as a whole entity. In the present secticn we
will do the same thing for the template as an individual
object. That is, we will describe the facilities frovided
to manipulate separately a single template.

=

First of all, we need to mention that all these

operations will be executed on the templates of the list

56

-

PR

AN . @ .
.a_a 4 & — & s a8

| VP T e T T A T T T A VT T, U P D P U AR Ay



TABLE XI

Error Types and the Correspcnding Message for Merge

*:'—":===:======:*====:==:::::::::::::::::::::::‘_‘:::=====::==

* %

: error type : error message
*::::::::::::::*===::===:=:====::::::::::::::::::::::::::::

* * )
* po list in * . . py
* * can not merge:no list in the memory o
* the memory * :
* *

Ao e e -
& * ;

*]1ist 1 or list2*
* *

* npot in memory:

3 3 3 3 36 6 30 3 3F 36 3 36 36 I 36 3 3 3 3 3 3t 3¢

*
R O e
* *
: current list : can not use current list is "pil"
: is nil : use "open" tc set the current list
|
«ﬁ
TABLE XII ’
Formats of the Informaticn Message for Current .ﬁ
T Y
*:.—-:================:==:==:===:::::::::::::::::::::::::::::* _;
* * Y
* message type 1 : )
% * ]
: <template name> in <list name> : ol
4
* message type 2 : 1
* * 1
I "pnil" <list name> is empty : 3
* message type 3 *
¥ ctmmm— i — e —— *
¢ ®
o * . . . * -
; * "nil" end of list <listname> L X R
A ]
[- .
) currently edited, except for the insert operation which may
' Le requested independently on the current list. Thus, ®
{ before starting the insertion, we may need to set the
i current list as the one we will be inserting in. This can




be done explicitly using the oren command or iaplicitly by
means of the commands RESTORE, SAVE, EDIT, or MEEGE since
these commands hLave the side effect of opening a 1list and

setting it as the current one.
a. displaying a template

As we said earlier, the editing session will
automatically start by the display of the template corre-
sponding to the starting point. Each template is displayed
name first followed by the body, which may include any

number of characters. Thus the text can be printed on

MENA. . . A B Ak RWRE .o os—on ABRER A s A a2 K B

several lines formatted in the same way they have been when
entered by the user.

The wuser may either continue to display the
tenplates sequentially by pressing the return key, or alter

AN e s

it by giving a new starting point in the same way we hLave
described for the options in the command EDIT (i.e. first,

last, or a template name). Also, these same options are

available when the end of list is reached.

b. insert and append

Many editors treat insertion and appending as

v r..' g

separate cases. In cur system we provide a unique utility

because appending is no more than a special case of inser-

tion which happens either at the beginning or the end of the
list. Thus, what will make the difference 1is e€ither the

option provided explicitly with the command, or the currert
position during the edit mode.

. direct insertion

A
3

The fact that the template editor knows which is

akand Vl_',"{"‘r"’r—v
[ ] [ ]

{ 58

4

the current 1list and where 1is the current position within !

the current 1list even when not in editing mode, with the f

3 fact that we are able to reference a template by its naae, l
- ’
l

[
A a e AW .

L_-, A e A A O I



w o e -
T W A AR e e Rl B e e R e AR I e “Me A A A Sl Nl A R¥aAEA LA A i

makes it possible to do a direct insertion without being in

the editing mode. However in such case the user must

?
L el AL

specify the place where to start the insertion (i.e. at the
beginninygy, the end, before a given template, or before the

current template).

This view holds that very often, the user knows
exactly where he wants to insert, therefore there is nc reed
for him to waste the time searching the place of insertiorn
(i.e to set the current template) by using the display

facility.

AL‘LL_AAII‘}A_!I"

. icsertion from the editing mode

It also [fossible tc insert new templates while
in editing mode. In that case we are not required to
specify the place of insertion since it will be autcnati-
cally assumed before the template currently displayed, or at
the end of the list if it was the current position. Thus,
the user can switch Lback and fcrth from the display mode to
the insertion mode.

The command for insertion is: INSERT followed
optionaliy by the place of the insertion. The place of
insertion can take the same values than the starting place

in the edit command (i.e. first, last, a template name, or

omitted when before the current template).
f Note that when the list 1is empty, the systen
will automatically start inserting at the beygyinning of the

list except when a template name was gJiven as reference for

a ;.‘. At LA:‘ . x A_“A!M_L.A.;.‘.L.A‘ !4 L_._'__._"A.n_ A—J‘_LA

b
{
r the place of inserticn. In that case an error will occur
3
3

and a message will be printed to indicate that the template

{ was not found. Also, when nc place is specified and the B
h current template is "nil" the system will start inserting at ;
S the end of the list. In any case before the user can enter )
A the new templates the system will notify him by a message

where the insertion will be. Thus, the user can say "OK :
g .
: 59 |




that is what I wanted", or if that was not what he expected
the insertion to be, he can simply abandon the request by

pressing the escape key.
. entering a new template

Entering a new template will require the user to
input first the name, than the text of the template. The
name must be unique, and may contain up to 10 characters
ended by the return key. An error will occur if the name
entered has been already assigned to an existing template,
or when the name begins with a digit or a double gquote
{(later will explain the reascn of these restricticns).
Also, when the user inputs more than 10 characters for the
name, the system will simply truncate to the tenth position.
On the other hand, the text of the template may imclude any

number of characters terminated by the key escape.
. ending the insertion

The end of the insurtion will be notified by
pressing the escape key in the fplace of the name. Thus, the
last two characters of the insertion should be filled by the
escape key. The number of temrlates inserted will ke auto-
matically displayed, and depending on whether the 1insertion
was requested from the edit mcde, or independently, the
template editor will switch back to the edit mode, or to the

command interpreter.
c. deleting a template

Template deletion will be done oniy during the
editing mode using the subcommand DELETE. Thus, the user
must display the template before he can issue a delete oper-
ation. This will provide more security since the user will
see the template and have a final <checking before he can

delete it.

60

e bt ik b A 4 A S e

.
X
‘o
-
]
o
.
.
1

PR

. WL

- NP

Y S

o AWRE.




e

‘-

T ————— e WL TN R TN T R T TR TR Coe e A T e T RO 2

Once the operation is executed, the system will
automatically display the next template, which beccmes the
current one. However, 1f the Jdeleted template was the last
one in the list, the system will sigynal the ernd of file and
set the current template to "nil". In that case, we nay
either restart the display, or simply exit, as it has been

explained in subsection 4d.

d. searching for a template

During the edit mode, it 1is possible to search
for a given template ty simply typinjy its name. When found,
the template will be displayed and becomes the current one.
However, if not found, the system will print an error

message and return back to the frrevious situatior.
€. 'a typical editing session!

Figure 3.4 shows a typical editing session where
we have two templates inserted (tempfact, tempexpo), one
deleted (tempadd), and five displayed (tempif, tempeval,
tempadd, tempsub, and tempdiv). Also, the figure shows a
successful search for a template (templeval), and another
search for a template (tempi) which failed.

f. modifying a template

In our system, the cnly way to modify a template
is to delete it and insert in its place the new one. This
decision is based on the tradecff between the frecuency of
modification, the average lengyth of the template, aund the
complexity resulting from including a facility to modify
partially a template with the effect that will have on the
implementation. Nevertheless, we must admit that it is very
unpractical and unconvenient to be forced to perform a

delete and an insert just because we want to make a small

61

e U aata e th..“-J\

g
p
|

i

i

ke

)

N




D WL Y e TR T

A g i = el v T TR RO A

tempif : 1if -- then -- else --
tempeval : eval --

tempadd P -+ --

DELETE

-+..tempadd deleted

*
-
®
B
lge]
’—4
P.
41}
+
-—
Q
o
fe
ot
o)
[y
o]
n
[82]
ct
o
B
Lo}
’—4
n
ad
o
n
3 3 3 3 I3
RTUUL. TN . ) WRTURAILN. | YOrer

tempsub P = ==
INSERT

= Jor

ee<.. insertion mode .....

..-. insertion tefore tempsub

input name: TEMPFACI i
input text: FACTORIAL -- "ESCAPE™ ]
input name: TEMPEXPC ]
input text: -- EXPO -- "ESCAPE" '
input name: "ESCAPE"

«eee 2 templates inserted
.-.. back to display mode....

tempsub P - = ==

tempdiv H Y A

"end of list reached

restart or escape tc exit": TEMPEVAL
tempeval : eval --

TEMPI

....tempi not found

WESCAPE"

....edit terminated
templist 1 now contains 6 templates
TE-->

Figure 3.4 A Typical Editing Session.

62

:
|

T W U LAY A Wl LI, - - - . . i . o PO P U0 W WY P U GRS GO U T N W ™ -.AL-j




modification on a given template. Therefore, we s5ugygest the

incorroration of a more elaborate and flexible facilities to
modify, including things such as: pattern sustitution,

string insertion, and concatenation.

7. Exiting the Template Editor

The template editor will terminate by the command

It

XIT. The control is then returned back to the user inter-
face without any further investigation. That means tae user
is not required to save the lists when he exists the teap-
late editor, even if those lists have been created or modi-
fied during the session. The reason 1is that it is still
possible for the user to return Lkack to the template editor
for more work on the templates. In fact this situation of
switching back and forth between modules will be very
fregquent during the debugging and the development of the
application. Thus, it is better to delay the control until

we are sure that we have the last version of the templates

(i.e. when the user asks to exit the entire systenm).
However, it would Le better practice to save the lists
before we switch to another module, just in case (e.y. we

lose the control because of an infinite loop 1in the inter-

pretation of the program ).
8. !Built in Tepplates!

As we said in chapter 2, the system provides a set
of built_in templates which are loaded at the starting of
the session, and are grouped in a list called "BUILT_TEAP".

These templates are listed in Figure 3.5

The first 8 templates defines the structure of the
analysis parts of the built_in rules. Thus, 1if the user
wants a kuiit_in rule to be apglied to his program he must

use the appropriate built_in template either to construct

63

a a4

o
1

® ®
FEDWN ..‘-...IA_-»‘

S

ORI W

_ @




W TR TR T W T W T TR T W T WY R T Y Y W YV T Y T e Ry T U YR Wl W WYY R TN

N
|
]
N #* o+
|
|

AVAR
.

| [
| |
v i
| |
| |
adiiiates

< H e ‘
eval : eval -- §
errorl : error: left argumeL: is not numeric -- -- ]
error? : error: right argument is not numeric -- -- ;
error3 : error: arguments are not numeric -- --

errord : error: operands are not compatible -- --

Pigure 3.5 Listing of the Built_in Templates.

N

the concerned part of his program so the built_in rule can
ke matched against this part, or to built the synthesis part

PP IR IP I T

of one of his rules so that the program <can be transformed
such that it contains a part which matches the built_in
rule.

PCY. - YR

The rest of the templates are used to unparse the
errors subtrees which may occur during the application of
the built_in rules. That is when an operand of an arithmetic
expression is not a numeric constant, or when the operand of

a boolean expression are not ccmpatible. In that case the

PPSEY . VR SRRy

system will replace the subtree by an error sukbtree whose
root contains the name of the error template and whose two R

children are the operands. For example the boolean expres-

4% i

sion ' "A > 3 * will be transformed to ' errord4 "A 3 ' and
will Le unparsed as:

' incompatikle operands for boolean expression : a 3

6U




v " Ty —— g T g Tk N FRACN A S S T C AT R At o Sl

C. CONCLUSIONS DRAWN FROM THE LESIGN OF THE TEMPLATE EDITOK

Before we start the design description ot the rule
editor, which will e our next step, it 1is worthwhile to
mention some observations and lessons learned during the
design of the template editor. Although <conceptually the
two modules are gquiet different, there are some common
aspects which relate to the list manipulation and the user
friendliness.

In the template editor we allowed many 1lists to be
present simultaneousiy in the memory, and subsequently we
included facilities and other security measures to deal with
this situation. As a result we ended up with a relatively
conplex set of commands to manifpuliate lists. Each time the
user has either to specify the list he will be working on,
or let the system take the default value which may cause
some surprises ( "Oh I thought the current list was the one
I inserted 1in!" But meanwhile he forgot about the save he
rejuested on the other list ).

Furthermore the number of checks and, therefore, the
number of resulting errors have dramatically increased by a
factor of 3, thus affecting the efficiency and the amount of
interaction between the system and the user. Yet, in some
situations we have been pushed to create a unsecure situ-
atiors such as allowing duplicate templates in the same list
(see MERGE), this may cause a lot of trouble during the
construction of the —rules or proyrams if the user fails to
take the appropriate action to e€liminate those duplicates.

Last but not least, this design decision will have a
direct impact on the implementatioa, and of course, on the
verification and debuggying of the system.

In counter part we gained some power and flexibility in
the system which are not yet prcven to be useful. Our argu-

ments to support that decision were:

65

- - -~ oa A e A At A o N PN R . U UM NS T . UV UE W PN WP R VT U St

A

-

i
A

Cn®

.-
dondnshndincdhh i

aa (O

" AJAA.




SN TR

P

1. The possibility for the wuser to develop several
different 1lists of templates in varallel fcr a

family of applications.

2. The possibility to try many different versions of
templates for the same application 1in order to
determine which ones Jive the best results in

term of readability.

3. To be abkle to take two different lists, developed by
different persons, or the same person for different
applications, and make them a unique one for a new

application.

Although these arguments are sufficient to motivate cur
decision, there is still an important unknown factor which
depends on hLow much the user will take advantagye oi these
facilities. Usually, common users tend to be rather conser-
vative favoring simplicity even if it 1is not the most effi-
cient way.

Based upon these observations, and tue time requirel to
implement such facilities we will design the rule editor
such that the user is allowed to have only one 1list in the
memory at one tinme. Thus, if the user wants to edit or try
different lists of rules he must unload the o0ld one and load
or create the new one. H!However, the templates which go with
these different rule lists may be present simultaneously in

the menory.

66

Bl ol

R, B ) ALY

h

‘LAI A




D. THE RULE EDITOR

1. General Description arnd Module Architecture

Figure 3.6 refresents the arcaitecture of the rule
editor. Tine module is made of 9 functions which operate on
iist, or on rules. However, since this 1zodule does not
allow multiple 1lists to be simultaneousiy present ir the
menory, we don't need facilities to deal with such situ-
ation. Thus, the combands will be simpler tharn those of the
template editor. Notice also, now there are two files: ore
for the abstract rules, and the other orne for the concrete
rules.

The plan of this section will be siailar to the
previous one, 1in the sense that we will first discuss and
descrite the design of the facilities which manipulate thc
iist, then we will do the same thing for the the facilities
which manipulate tahe rules. Hcwever, since a list of rules
is treated like a 1list of templates we will try to mairntain
tiue same strategy and use the same commands. Ve will not
spend much time describing again the same features and the
necessary preliminary coatrols, instead we will focus on the

specific reguirements of rule manipulation.

Like the template editor, the rule editor is given

control by the user interface when the command RULEDIT is

selected, The rrompt signal will tLte displayed (RE-->) to
rnotify the user that he can start interacting with the
module.

3. Ike Command Interpreter

Tte role oi this function is tc accept the user's command,
identify 1t, and wher everything 1is correct, transter the
contrcl to the approjpriate function for execution. An error

messa je will be sent when the ccmmand was not correct.

67

. P




-

This solution has the advantaje of detecting all

the missing templates in one [pass. Because the templates

are independent of each other, any missinj one will not have
ar effect orn unparsing the rest orf the abstract tree. For
example, suppose we have the following abstract tree:
)
®
tempeval
]
/H]Llf\ |
tempegu teipmul ;
//////\\\\\ /////////\\\\\\\\\\\\\ ¢
n 0 tempfact ]
<
[
]
"
]
tempsub 4
1
4
n 1

now suppose we have only the foliowinj templates: :
"
tempeval : evaluate (~--) B
tempif : if -- then -- else -- }
tenpequ : -= = -- -
tempfact : fact -- :
R
]
.1
31 3
g




able to construct the abstract trees. However, for most
users, the concrete form is the most visible aspect of the
rules. It is the form which will be printed ( see PRINT ),
and in the present case the form which will be displayed on
the screen. But, since the abstract trees do not cortair
those key words which make a rule more readable by human
beings, we must define a way to get back from the abstract
form to the concrete form and sclve all the problems relateil
to this prrocess.

This process of unparsing the abstract rules
will be relatively simple, provided the appropriate temp-
lates are supplied. It will consist for the system of
walking through the tree, and for each new root searchin)
for the template, emtedding in the concrete form a copy of
this template with its place holders filled witih the son
nodes. These nodes can be leaves representing a variable
name or a constant, or another root representing a new temp-
lates to be embedded. Thus, the templates will be nested
until the right_most leaf is reached.

Several problems may be encountered during the
unparsing process such as the system not being able to find
the template needed (i.e. o template with the name
contained in the root exists), or the structure of the temp-
late not «corresponding to what the system expects (i.e.
nunber of place holders in the template is less or more thar
the number of sons in the subtree)

The first problem can be solved in two ways. The
first soclution would be to stcp the unparsing process as
soon as a template 1is not found. The system would then
display the unparsed part and send aa er.or message with the
name of the missinyg template. The second solution would be
to display the name cf the missing template preceded by a
special character and continue to unparse the rest of the

tree.

80




Saat e A e "Rt A g Mk Gui-Sall - T g Ll Nodiat i Nt St Bhad Nlaie )

The advantage of this approach 1is that it
prevents the user from making syntactic errors resultinyg
from a misspelliing in the key words. It aiso allows the
user to detect early an error in the spelling of the tamp-
late name. For example, if he types "nul" instead of "null"
the system will not find the template and subsequently
doesn't display anything. Instead it will take the input as
a variable name and will reqguest the next input.Thus, the
user WwWill discover immediately that he made a nmistake.
because he 3did not get the template text as he expected. Cr,
if %“pul®" happens to be a template name, the user can see by
Jooking at the displayed text that it is not the template he
wanted. Another advantage is that the user can not enter an
incomplete structure, because the system will keep asking
him until the abstract tree is completed and will not accept
any input after that.

Now the guestion 1is how the system 1s going to
determine if the input value is a template name, a variatle
name, or a constant? To solve this problem, we will take
the same convention adopted in wmost conventional progyramming
languages. That is, template numes are like reserved wcrds,
numeric constants are integer ard real type numbers, nonnu-
meric literals are any string preceded by a doukle guote
("), and a variable name is anything else. Thus, once a
name is assigned to a template it should not be used as
variatle naame. Also, to avoid any ambiguity, a template
name should not begin with a dcukle juote or a dijit. in
fact if we recall, the system will issue an error aessage if
a template is given an 1illegal name 1including the cases

where the first character is a digit or a double quote.
b. displaying a rule

Most of our discussion up to now has referred to

how the user will enter a ruie and how the system will be

79




inputs and outputs

- ————— ——————————— — ———— ————— ——— —— ——————————

——

tempeval : < eval 1la >
<1a>

o —— — - — — > — — —— S - ——— ——— ——— -

—— ———

tempeval :< eval la >
< la >tempmember:< member 2a : 2b >
< 2a >

- - ————— ———— o ————————— — —— i ————— —————————

tempeval :< eval 1a >
<la>tempmember: < member 2a : 2b >
<{2a>x

—— v — — ——— — ——— —— — ———— ——— Y —— —— — ——— ——— - ——

———— -

tempeval :< eval l1a >
<{la>teapmember: < member 2a :
<{2a>x
<2b>1

13
loa
v

. — > —— o ——————————— ———— —— ———— > —— o —

intermediate

—— i ———

tempeval

temprember

tempeval

temphienber

- e - — ——

tempeval

tempmember

When the tree is completed the system will automatically

end the interaction and ask for the synthesis part which

will te constructed using the same procedure.

BT\ . ST

e

L

Figure 3.9 Example of Rule Insertion. 5
73 )

®

e e . a4 e .



L

T — _——— A amm e Aan aas s 4 TR e v T e Tt Tl 2

position in the tree and what remains to input, simply by
looking to the indices. For exafple:

Suppose we have already defined the following templates:

tempeval : eval —-

temgmember: member -- : --
teapnull : null -
tempif : if -- then -- else --

tempfirst : first --
temprest : rest -

tempequal : -- = —-

Each one of these templates defines a model of suktree by
means of the place hclders, and a concrete form by including
key words. Now suppose we want to insert the following

rule:

eval member x:1 ==> eval if null 1 then "false
else if first 1 = x then Ytrue

else member x : rest 1

Using our solution the insertion will include the follcwing

steps:

. step 1: input the rule nanme
. step 2: input the analysis part
. Step 3: input the synthesis part

Figure A.1 illustrates the complete session for entering the
analysis part of the above rule, with the different interme-
diate states of the abstract tree. Notice, for clearness,
in each step we repeated the grevious inputs and outputs,
while actually a new input or output is just added. The
arrow indicates the node to be filled, (i.e. the current

position within the tree).

77

b &

bkl A

PRV SRR LT VI S G R

Yo




YT WY T T T U Y vy T ey e Ly T ITIET T T re TR ERRWRR ATV INTAITAT (I N Ny e w7

the trees, and most important it will slow down the trans-
formation, since there will be more nodes to compare for the

matching and more nodes to copy durinyg the substitution.

AN A £ A A8 % A A SN AS .t

Another related proklem, which thas been intro-
duced earlier (see RESTORZ), 1s that the modification of key

words in a given template will reguire the modification of

all rules which include the templates. Otherwise, and since
new programs will use the new template, these rules will
never match a program subtree. On the other hand, using our
method the wuser can change the key words he wants without
affecting the rules and the +transformation process. In
fact, we can use this property to have different concrete
forms for the same abstract tree. Th.s may solve the
problem of conflicting view pcints on how readability 1is
perceived between users who share 1lists of rules and
prog ams since each user can sufpply his own set of templates
to unparse the same rules and have his own versicn of the
concrete form.

In our solution, +the user constructs a rule by
puting together the parts of the tree using the ‘Lasic
subtrees whose structures are defined by the templates. He
requests each template by its pame. He will be assisted by
the system which will display the text of the template with

the rplace holders indexed by a number followed by a letter.
The number represents the level of nesting which corresgpoads
to the current height of the tree. The letter represents
the position, from left to right, within the same height.

At the same time the system prepares a copy of
the subtree, fills its root with the template name, and

waits for the user to 1input the values of the son nodes. )

These input values may be a variable name, a constant, or a

template nanme. In the latter case the node will expand to
another subtree. The tree is ccnstructed top down from left !
to right. Thus, at any moment, the user knows the current .
e
76

G A e a o m e " - L LR o e DR SO NN ST VAL V). G, UL N ST, W) e IRV VAT Uty Sl WA A YA ST G |




L. St B R e o - W e T W MR T L A e A A A e R AN i L L e e

-
. .o el
2 niaaat I

on this aspect, and briefly discuss how the rest of the

operations are designed.
a. 1inserting a new rule

As we mentioned several times through this

chapter, a rule has two forms: (1) A concrete form which

[ o
wi ... ., Wi

i presents a readable and pretty_printed text constituted of

key words, variable names, and constants. (2) An abstract

fora represented by a tree structure where we have only

template names for the roots, acrd both variable names and

l constants for the leaves. The ¢uestion now is how the user
will input the rule and how the systea will construct the
abstract trees ?

Obviously, the classical approach is to let the
¢ user input the concrete rule, and leave it up to the systen

Y, VN

to build the abstract tree using the templates. Like we
said earlier, this will require the system to scan the

concrete rule, search for the templates which match the
l . parts of the concrete rules, and subsequently coustruct the
tree. Of course, 1if thke user types incorrectly one of the
key words, the system will nct be able to continue the
parsing process. In this <case it must 1issue an error

message and either abtandon the process or try to recover and

continue the parsing, which 1@may require some interaction
with the user and perhaps a "dc what i mean feature". In
sum we will have to deal with the same kind of protlems
q encountered in conventional comfpilers.
our objective is tc take full advantage of the
presence of the templates to orftimize and simplify the tree
construction, and eliminate a class of errors resulting frox

a missgpelling in those key words. Yet, we want to get rid of

L B VEASAISUSNY SO . SUSINISISICIREN. 5

them since, as far as the transformation is concerned, these

key words have no semantic meaning. On the contrary, ‘their

s 2 .

presence will increase the amount of storaye necessary for

75

A A liaA-s A A e memaa o a_m s a_a s m alim w4 a s e A u . PR SR S S R RSP YOI GUNRY VWSS T WOV VoW, SRS JPTILIE SH A SPY. |




T

-

)

Ta}

‘

Rt Wadh ‘SR oA ol B Radi 2 20 3 - " TR T Y
T Y a4 DA i s 4 it Dadidied Y TR Gy TR TR A

rulel : eval if cond then ac else al
==>
evalcon cond ac al
rule2 : evalccn "true ac al
==>
eval act
rule3 : evalcon "false ac al
eval al
rulel : eval fact n
==>
eval if n = 0 then 1 else n * fact n - 1

Figure 3.8 Pretty_printing of a Rule File.

which have been created or modified but not yet saved. When
such a list is found the systerm will interact with the user
to get the confirmation to reinitialize the old 1list, or
abandon the request. The new list will have the name speci-
fied in the command, or if no name is specified the systen

will assign to it the same name than the file.

5. Rule Manipulation

Operations on rules include insertion, deletion,
dispiaying, search, and modification. Like in the template
editor, and based on the same arguments, insertion may be
done done during the editing mode, or independently.
Moreover, all the operations on rules obey to the sane
mechanism described in the temfplate editor using the sane
commands. The ma jor difference, however, is that a rule is

not created like a template. Therefore, we will focus more

74

FETW T Tw TR O®"RTw 70"

!—A‘




3
A

(e

SRR R MR R AL RS N AN St D ARG AP L SR O A A AR AR A AR P ' M
rulel 01 teapeval 03 tempif 00 cond 00 ac 00 al
03 tempevcon 01 tempeval 00 cond 00 ac 00 al
rule? 03 tempevcon 00 "true 00 ac 00 al 01 tempeval
00 act
rule3 03 tempevcon 00 "false 00 ac 00 al
01 tempeval 00 alt
rule 4 01 tempeval 02 tempfact 00 n
01 tempeval 03 tempif 02 temequ 00 n 00 O
00 1 02 tempmult 00 n 01 tempfact 02 tempsut
00 n 00 1
Each node of the abstract tree is represented by a
number followed by a string cf characters. The number
indicates how many dependents the subtree has, and
the string represents the content of the node.

Figure 3.7

of the rules.
file.

of the

specified,

the list to the

will Le sent to

d.

files which
loadinj the abstract
witih no parsing and no template search necessary.
before starting the execution cf

will check

Printing of a Saved Rules File.

Both commands can optionally include the name

However, when the name of the file 1is not

the system will autcmatically assign the name of

created file. As usual, an error message

the screen if there is no rule list created.
the restore function

This function allows us to 1load in the aemory

contain abstract rules. As we

said earlier,
file will be a relatively simple task
However,
this function, the system

1f there is already a rule list in the memory

73

T— <

.JDLL14;&

Lo’ o

. 5.

. AW L

PR . N VIR

3
L
1
]
|
i




- Y v - f'kvfﬁﬁvt .y, V. ¥V, ¥ r_r’_Tj

B s At o o

Caluir el ML ARE AL RN T w - L e v e (s - . W P "SR B Tl i A A o P

parser. Thus, each time we make a restore, the system will

have tc go through the parsing process to rediscover the
structure and reconstruct the tree. Yet, any minor modifi-
cation in the template, even when it does not affect the
structure, will make the parsing impossible. For example:
Suppose we had "fact =n" as a part of a concrete rule, and
suppose that the template used to construct this part was:
"fact --".But, suppose for some reason (perhaps to imfrove
the readability), the user had decided to change it so that !
now it 1looks like: "factorial --". Although this miror \
change does not affect the structure, the system will not Le
able to parse this same part of the rule.

On the other hand, wusing the abstract file the

user can change tae template as he likes as long as the 1

structure remains the sanme. This is because, we don't |
record these key words in the abstract file, instead we
record the structure. We don't even need the templates to %

restore the rules since the structure of the tree 1is
preserved in the file.

The third answer suggests to save both forams.

A A A A s

TLil> svulution seems to be the most appropriate. The user
can have his printing whenever he needs, and the system can
restore the rules in an easy and systematic way without any

parsing required. 1In fact we will face similar alternatives

when we discuss how the rules wilil be comnstructed. Figure

3.7 represents a printing of a saved rule file (i.e.

CaTa A a_a & AR

abstract form), while figure 3.8 represents a printing of a i

its corresponding pretty_printed concrete fornms.

. Commands

In order to distinguish between the two opera-

AGEK AL L. ...

tions we will provide two different commands. Thus, to save
the abstract form we use the command SAVE. On the other

hand we will use the command PRINT to save the concrete form

72




-~ T A Ao A Ben b ol Man arun oo 5 S A St g W A S AR Al S T MDA M AN A Tl DA SRt Ml B i At

c. saving and printing a rule list

Although these are two separate functions, we
prefer to discuss them together lLecause they represernt two
symmetric aspects of the rules.

As we already know, a rule has two forms: an
abstract form and a concrete rorn. The abstract form is a
tree structure which will be used for the transformation
process. The concrete form is what will be displayed by the
system for the user convenience.

Obviously, 1like any other sof tware product, it
does not pay to spend a lot of work to develop the rules if
we can not reuse then. Therefore it must be possible to
have a permanent copy of the rules which can be restored
when needed. The guestion is which form we will save?

Basically, there are three possible answers to
this question:

1. Save the abstract form orly
2. Save the concrete form only
3. Save both the concrete and the abstract forn

Let's examine each one of these answers and decide which one

to choose.

Saving the abstract form only seems to be suffi-
cient, at least as far as the system is concerned, since it

will be able to restore the file and reconstruct easily the

original abstract tree without much work. The problen is
F’ that the only way the user can look at the concrete rules is
’ by using the display facility. Therefore, Le will not be
1 ) able to have a clean and readatle printing on which he can
[ work and understand what is going on.
,. Saving the concrete form will satisfy the user's
S need, but in order for the system to restore the file and
E' reconstruct the abstract trees, we will have to include a
o

71




Table XIII shows an illustration of the interaction between
the system and the user for the third case.

TABLE IXIII

Dialogque for the Reinitialization of an Existing Rule list

OPEN LISTNAME
warning! There is already a rule list in memory
<listname> not saved since the last change
do you want to reinitialize it yes/no:
1. A "yes" answer causes the reinitializationp
2. A "No" answer causes the abandcnment of the

request

LB R AR R ERERERSES:EXXRJ,]
36 34 36 30 3t b 30 3E 3 36 46 3F 36 % 3E

b. the edit function

Conceptually there 1is no difference between
editing a 1list of templates ard editing a list of rules.
Therefore we will carry out the same operations we described
before. These operations are display, deiete, insert, and
search. Nevertheless, we must mention that in the presernt
case the user doesn't need to specify the name of the list
to edit, since it will be automatically done on the current
list provided it had been previously created by an open
command, otherwise the system will ¢enerate the fcllowing

€rror:
"can not edit, no rule list opened"®

The ma jor difference, though, will be in the way
we will enter a new rule. But since this operation is part
of rule manipulation, we will delay its discussion until the

next subsection (i.e rule manipulation).

70

LA, e e L W W e L

PR N

P
alxala

{. vt et IR

et m a mla




4., lists Manipulation

In this subsection we will describe the facilities
which allow us to process a list of rules as whole entity,
the commands to request these facilities, and the different
controls and checking needed before and during the execution
of the function.

Obviously, facilities such as remove, merge, and
list are not needed in the present case because at most we
can have only one list. In addition, most of the commands
will re shorter since now it is not necessary to specify the
name of the list. On the other hand, because the rules have
two different forms we need to include additional facilities
to kandle each one of these two forms. Also in some cases

we need to include additional security measures.
a. the open function

Like in the template editor, the open function
will create and initialize a new list. However, now the

system has to deal with different situations, which are:

1. There is no 1list in the memory
2. There is a list but it is empty

3. There is a list which contains rules

The first two cases don't require any special
treatment other than to create the list, initialize or rein-
itialize it, and assign to it the given nane. The third
case requires more consideration from the system. Before it
can execute the OPEN the system must make sure that the real
intention of the user is to reinitialize the list. Thus it
must inform him about the existance of the 0ld 1list, its
contents, and whether or not it has been saved after the
last modification. Based on this information the user can
either atandon to the regquest or confirm it, 1in which case

the system will go ahead and reintialize the existing list.

69

)

x M




A A e L T Sl

CURRENT HELP INSERT
OFEN — RULES |ag——>r EDIT
LIST
RESTOKE SAVE PRINT
CCNCRETE
——————
FILES
ABESTRACT
> FILES

Fiqure 3.6 Architecture of the Rule Editor.

68

R

e . . L PRI .
PN WAIRN WP WY AT WY T W WP WA SN

AR . . C. . ad




TN TS

T W T T TR QT T g T e T e T e T T T
= e W AT A S TN

T T Y TS S TR T T T TR TR U R TR T

Since the templates "“tempsub" and "teapmul" are missing the
system will display the following concrete form:

evaluate (if n = 1 then 1 else ?tempmul n fact ?tempsub n 1)

The second problem which can be encountered is
that the structure defined by the template found does rot
correspond to the structure of the subtree the systea needs
to unparse (i.e. the template has been changed between the
time the rule was entered and unparsed). In this situation
we have two different cases. The first case is when the
nunber of place holders is less than the number of sons in
the abstract subtree. Conversely, the second case is when
the number of place holders is greater than the rnumber of
sons.

The solution for the first case can be either to
stop the unparsing process and send an error message or, the
alternative would be, to <continue and wunparse the extra
sons, but display them with a special note. For the sanme
arguments mentioned above, we will chose the second alterrna-
tive and display the extra scns betwcen square brackets
preceded by the name of the temfplate. We added the name of
the template becanse the extra sons or the place h»lders nmay
appear far from its root in the concrete fora, making it
difficult for the user to determine to which template the

extra son or place hcolder relate. For example:

If the template "tempif" was changed by "if -- then --", the
same abstract tree will be wunparsed and displayed as
follows:

evaluate(if n = 1 then 1 [ tempif n * fact n - 1 1)

This tells the user that "tempif" has now one less flace
holder than when used to construct the rule.
For the same reasons, the second case will be

solved in a similar way. That is, the new :xtra place

82

PR N 2,

PTG W

P N N

@

_‘.. PR




holders in the templates will

T M A AN T AN A AT S L A0S Nl A o TRTT T TTYR vy vy

ke displayed Letween brackets

preceded by the name of the temfplate. For exanmple:

If the template "tempeval"

has been changed so that it

contains two place holders instead of orne, the vrule will

then be displayed as:

evaluate ( if n = 1 then 1 else fact n - 1 { tempeval -- })

This telis the user that 'tempeval" has now one extra place

holder than when used to construct the rule.

c. deleting a rule

This function allows one to delete the rule

currently displayed.

After the deletion the system will

automatically display the next o_ule which becomes the

current rule.

However} when the end of list is reached the

current rule will be ™"nil" and the nmessage "end of list"

will appear on the screen.
exactly like the delete of the

In fact this function works
tenmplate editor.

d. searching for a rule

During the editing
a rule by typing its name. If
found, it will be displayed
However, if it is not found an
the screen and the system will

gzode the wuser may search for
a rule with the given name is
and become the current one.
€rror message will be sent to

return back to the situation

before the search was requested.

e. modifying a rule

As in the template

editor, the only way the rule

editor provides to modify a rule is by deleting the old one

and insertirg in its place the

new one. 0f course, this is

not a convenient way to do modification especially when a

rule is lony. Therefore it is

preferable to include a nore

elaborate function which allows partial modification. Bat,

83

R

AW

AW st B K. JPORAr. . J W . R\ . 1

"

PRPEIAVS b PR

e




since we don't have a parser, the user has to work on the
abstract tree. However, this task will be simple because j
all we can do is to replace a subtree or a node by another ' !
one. This can be done by a single command which specify the
node or subtree to be replaced (using amultiple Jualifier to

reference a node), and then the new node or subtree can be

entered in the same way we enter a rule.

6. Getting Information on the Current Rule

This utility allows to get a message which tells the

user what 1is the current rule. The command to get this
information is: CURRENT Depending on what is the current 1

position, the system will print one of the messages shown in

table XIV.

.
|
-4
TABLE XIV .
Messages for the Current Conmmand 4
* * '
* %X |
: 1. < a template name > : 1
b
: 2. "™nil"; list is empty : .:
¥ 3. "nil"; end of rule list reached * sl
. . R
: 4. "nil"; no rule list has been opened or restored : 1
* * i,
! *:::::::::::::::::=======:=======:=====:==========:=:====:=* ’
[ 4
)
- 7. Exit the Rule Editor .
1
By typing the command EXIT the wuser will exit the rule 3
editor,and return back to the user interface. ‘
( =
. :
~ ’
84 -
¢ "
1
!
4
. oed




W Y

vy

-

e e

)

T — Rt e Chmenas Caame — - Y R e e b Pt Db A e A S A0 J Rl AR AR AL i A 9

E. THE PROGRAM EDITOR

Recall that a program in our system has the same struc-
ture as a rule except that it fcrms a unijyue synthesis part.
Also, 1like the rules, programs have an abstract form and a
concrete form. It 1is therefore natural that we manipulate
programs and their lists like we do for the rules. In fact
we will wuse the rule editor to write and edit prograas.
However, in order to avoid the user geting confused we have
made some adaptations so that he «can make the separation
clear. We have changed the prompt siynal froa (RE-->) to
(PE-->) and we have replaced the word rule by program in all

the messages and other system outputs.

1. Using the Prcgram Editor

The program editor is given c¢ontrol either by the
user interface when the command PGMEDIT is typed, or auto-
matically by the interpreter when the user requested to save
or print the result of the interpretation of his precgranm.
Once the program editor has started the user cam request the
same facilities available in the RULEDIT, using also the
same commands to manipulate both programs or a program list.
Thus, during one session we may have several prograas
grouped in the same list and ready to be interpreted without

any loading and unloading being necessary.

~

Z. Program Lists

There are two separate proyram 1lists which can be
manipulated by the program editor. The first list is the
one created by the user and which may contain any number of
proygraas. The second list is created. by the interpreter to
hold temporarily the result of the 1interpretation, which
might be either a entire tree, or a single value. The name
of this 1list is "“T.RESULT" and the name of the resultiny

85

I T P Y T R L. DL Ty Y U WA I, N I M - A PE )

! NP
PP T S

. 3w

Aaa

e O

.1_1‘1

.
-

,. PR
. A




L AP A g 1 s Wl il Stk Janihd N Y- M AT A AR TR LT R N e A

program is the same as the original program. However, since
the program editor can not handle more than one list during
a given session, it will not be possible for the user to
access his program list when the program editor is given
control by the intergreter. Conversely, the result list can
not be accessed when the prograax editor is given the control
by the user interface.

The question is: why is the program editor given the
control by the interpreter? The reason is simply to alilow
the user to save, print, or redisplay the result (the result
is automatically displayed after the interpretation). 3ut,
since this result can also be a new program tree, we thought
it is natural to use the program editor facilities to
perform these operations. Thus, the user can manipulate it
like he manipulates any other list of programs. However, in
principle, such things must be hidden from the user. That
is, at the end of the interpretation or when the command to
interpret is entered, the user specifies if he wants the
result saved, printed or displayed. Whether the interpreter
uses the program editor functions or its own functions must
be irrelevant for the user and hidden from him, especially
when this list is temporary and will be lost as soon as we
exit the interpreter. Most of the users will probably ask

why they can not access the result again since they just did
it earlier using the fprogram editor.

Now, you may have wondered why we make such a design

r—v v—‘ s ZEA et e et

decision since we think this shculd be hidden from the user
¢ and yet it may create some confusion. The main reason which

motivates our decision 1is that we did not want to overload
- the interaction between the user and the interpreter with
f things which normally relate to program manipulation and not
| @ to its interpretation. For example, in order to be consis-
% tent we pust allow the user to give a new name for the file
: to be saved, to specify if he wants to save the abstract or
o

86

|
®
S

N . T . - S .t - . L Ce . . L PR v PRI
P PR A Y 9" e A . aoa a - L o




TAAY

the concrete form of the program, or both ( which reguire
two different file names), and perhaps allow him to delete
some of the proyram results before saving or printing them.
This, of course, will involve a lot of interactions, whickh
have nothing to do with the interpretation and it would be
inappropriate to incorporate then. On the other hand, the
user will find it more natural to perform such orerations

while using the rule editor.

3. ZEZxiting The Progqram Editor

To exit the program editor we will use the standard
command EXIT. This will return the control back to the

caller (i.e. either the user interface or the interpreter).

4. 1limitations and Constraints

Since we are using the same features as the rule
editor, we will have to deal with the same limitations and
constraints concerning tke modification of the programs.
Yet, it may be worst because a program usually is longer and
make take several lines to display. Therefore, it is neces-
sary to provide a more elaborate way to modify programs
other than by simply deleting the o0l1ld one and inserting the
new one.

Also, a program may be so biyg that it is not prac-
tical to display it entirely. Instead, it would be better
1f the user can ask to show only a given part, or truncate
at a given point, with the possibility to navigate between
the different nodes cf the program tree.

In summary, we need a tool which makes uses of the
structure of the program and the templates to perform the
kind of facilities we described above. In fact it will be
easy to identify and reference a node in the abstract trees
by utilizing the template names used previously to construct
the prograan.

87

R N . T T T T Y T T T T T T S L NN TP TR I .\.-,.x._J

PP ) :J._}A.

.

L}
e




—Y

)|

e

A

F. THE INTERPRETER

This module is given the ccntrol by the user interface
when the user types the command INTERPRET. Once the prompt
signal (PI-->) is displayed the user can request the inter-
pretation of one of the programs included in the program
list. In addition, 1like the other modules, the interpreter
offers a help facility, which may be obtained by typing the
command HELP.

The user requests the interpretation of a program by
typing its name. In addition, the user may ask the system to
display the names of the rules successfully applied for the
transformation process by typing the word "RULZ" or simply
“Ek" after the program nanme.

The interpretation process consists of the following
steps:

1. Locating the Program List

it~

In this step, the system will verify if the user has
already loaded or created a program list. If such a list is
found the system will go to the next step otherwise it will
send an error message '"can not interpret; no program list
in the memory", and will redisplay the prompt signal. In
this case the only operations allowed are either help or

exit.

2. locating the Erogram

Cnce the program list is located, the system will
search for the given program until either it finds it or the
end of list is reached. In the first case it will continue
with the next step, in the second case it will issue the
following error message:

"{program name> not found"

88

O P A . . [ G S S ) R

N J




3. (Creation of the Result List and Program Copy

» . In this step the system opens the result list called
] "T.RESULT" and «copies the prograa to be interpreted irto
this list. This copy will be used for the transformation
process. Thus, the original copy will be left unchanged

after the transformation, so the user can request the inter-

wj

pretation of a given program as @many times as he wants

{(perhaps with different sets of rules) without being forced

to switch back to the proyram editor, and reload th> progranm
; at each new interpretation.

L, Program Transformation

In thls step we want to apply to the program the
transformation rules until they no longer apply. Wwhen this
occurs we will have the final state of the program, which
may be either another program (i.e. an abstract tree), or a
single value (i.e. a node which contains the final result).
When the transformation 1is ccmpleted, the system will

! ) unparse the transformed program and display the concrete
form as the final result.

The program transformation will be performed by a

collection of functions which we will discuss below. Also,

4

we will define the algorithms for each function, which are
based on the amnalysis given in [Ref. 1]. These algorithms
will be described wusing a Pascal like pseudo_language with

comments included between brackets.
a. selecting and applying the rules

Basically there are two possible approachs to

selecting the rules to apply for the proyram transriormation

) process. The first approach consists of picking up a program
subtree (the first subtree will be the program itself) and

searching for a rule which matches this program subtree. 1If

89

N T R T S T T T T T . P P YT S U S S S S Y 1 Y. I U ey, B



. S 4 K e R I
T T T T TN A MO A : e W

such a rule is found the system will proceed to the synthes-

ization of the program (i.e. perform the tree substitution).

This process is repeated with thke newly obtained prograr. On

the other hand, 1i1f no rule matches the subtree, the systean

will pick up, 1in preorder, the next program subtree and |
restart the process with this new subtree. This process will

continue until no subtree of the proyram matches any of the

abstract rules.

The second approach consists of picking up the
next rule in sequential order and matching it against the
program subtrees. When a match occurs the system will
proceed to the synthesization of the subtree and will
restart the process with the resulting program. On the other
hand, when no subtree of the r[rogram matchs the rule, the
system will pick up the next rule from the rule 1list and
start the same process again. Like in the first approach,
the transformation will end when no rule matches any of the
program subtrees.

In terms of number of comparisons as well as in
term of igplementation difficulty, Loth methods appear to be
equivalent. There is no clear evidence about which method
is more efficient. Therefore we believe that the best way
to evaluate and compare them is by implementing each one of
them and by having them tested cver the same set of prograas
and the same set of rules. Hov~ver, the second method has
the advantage of maintaining tie same order of selection
which is +the order in which the rules have been entered.

This may be in some cases useful, and may reduce the number
of rules needed to transform a program (e.g. recursive func-
tions, where the basis must te checked before the recur-
sion). Thus, the user can take advantage of this property
when he writes his rules.On the other hand,in the first
method the order of cselection is random and hardly predic-

table especially ip case of relati ly large prograums.

90




| A e s 2 2 ca e aaie we g et on 0 Bt L Wl Jud Sl Jacdl Sl e ML EPIL I SIML ST A ROR I LR A Sl ghatn Mieid JAnSe ARurt dhall St Thegt M MRS A
L Y " . . L N R Y - N a e T - . v . ~ . .

In our system we will use the second method
because it preserves the order ¢f the rules and,of course,it

still works in the general cases. The general transforma-

.
ll_AJ'hn'.-""'

tiorn alygorithm is defined as follows:

Y

ALGORITHM transform(program,rulelist) ;
BEGIN
end_of_transformation:=false;
WHIIE NOT end_of_transformation DO

L I®

{ transform the program by applying the rules
until they no longer apply }
BEGIN

success := false;

DS, NURPULE.

get_firstrule(r,rulelist); 1
WHILE (NOT end_of_rulelist) AND (NOT success) DO )
{ select the rules one by one until either a

i

match occurs,or all the rules have been

unsuccessfully tried for all program subtrees }
begin

get_firstsubtree(st,progranm);

WHILE (NOT end_of_pgrogram) AND (NOT success) DO

. .SV

{ search for a program subtree which matches j
the rule until success or no more subtree } R
BEGIN

initialize(c) ;

W

match(r.analysis,st,c,success) ; g
IF success THEN
synthesize (r.synthesis,st)
ELSE
get_preorder_nextsubtree(st, progranm);
END WHILE;
get_nextrule(r,rulelist);
END WHILE;
end_of_interpretation := NOT success;
END WHILE;
END transfornm.

FIPEPY. SN

Y

sl L

— A!..L.h. .

91

" - . . 5 . . . L e . S - . - AN Tt et AT
Py S S S N T L P LT S Wy SNy Y . W 2 LY T R PR P S N e . -




b. tree matching and variable binding

This process consists in matching thke analysis
part of the abstract rule against a given subtree of the
program. The result of this @matchiung process is either a
failure, or a finite function whose domain is the set of all
variable names in the abstract rule, and whose range is the
set of values bound to these variables during the matching
process. Thus, we need to define a procedure
match {(4,P,C,SUCCESS) where A is a pointer to the root of the
abstract tree which initially will be the main root of the
aralysis, P is a pointer to the root of the program subtree
to be matched against, C is the ~context of the variatble
binding, and SUCCESS is a Boolean variable which will iandi-
cate if the match succeeded or not. Note, since the values
bound to the variable names can be either a single node
which contains a constant, or a whole subtree, therefore the
range of C will be a set of pointers to these single nodes
or suttrees, and whose initial values must be "nil".

Using the same pseudo_language we define the

algorithm for the match procedure as follows:

ALGORITHM match{a,p,c,success) ;
BEGIN
IF constant (content (node(a))) THEN
BEGIN
{ case of constant to match }
IF content (node (a)) = content (node (p)) then
success := TRUE
ELSE
success := FALSE
END { end case of constant to match }
ELSE IF is_template (contert node(a)) THEN
BEGIN
{ case of subtrees to match }

{ the content of the rcots must match and

92

D - . . « T e A .
. P P » P U NPT DR DN T PR S e s o p e B g P U U ) —— -




T eT eI W T, VT W T W LT T, T T T TR T

the rest of the subtree nmust also match }
IF content (node (a)) = content (node (p)) THEN
BEGIN

{ check the rest of the subtrees }

s = firstsubtree (a);

s1 := firstsubtree (p);

success := true; o

YHILE (s<>mnil) AND (s1<>nil) AND (success) DO
{ match the rest of the rule subtree against

the rest of the program subtree until

.

either a failure occurs or no more subtree
to Le matched }
BEGIN
match(s,s1,c,success) ;
{ prepare next subtrees } ®
s := nextsubtree (a);
s1 := nextsubtree (p);
END WHILE;

{ at this point both subtrees must finish

‘ .
s TSR

"

together otherwise match fails }
IF s <> nil or s1 <> nil THEN
success:=false; j}
END o
ELSE
{ roots didn't match }

success: = false;

. e
O
———a

END { end case of subtree to match }
ELSE
BEGIN

A_A,_A__b.__l_&_l o

{ case of variable name in the node }

Lle’.

IF in_domain (content node (a),c) THEN
{ p must match the value bound to the variable
in the node pointed by a.We will use a special

function called "equal"™ to verify the eguality

1 2 a 2. &_a x aal

between trees patterns }

93

e . -
wfnta ax s a




success := equal (p, binding_of (conteut node(a))
ELSE
BEGIN
{ bind the variable to p and add it to ¢ }

success := true;
include_bound (content node(a),p,C)
END;
END; { end case of variakle }

END match.

c. synthesization (tree substitution)

The synthesization process will be dorne after
the matching has succeeded and returned a finite function
whose domain is the set of variable names found in the anal-
ysis part of the rule and whose range is a set of pointers
which point to the nodes and subtrees bound to the vari-
ables. 1In addition, we have two pointers; the first one
points tc the program subtree which matched the rule, and
the second pointer points to the synthesis part of the
abstract rule. Thus, we have everything we need to start
the synthesization process.

Basically, what the system will do is to take a
copy of the tree representing the synthesis part of the
rule, and then visit one by one the leaves of that tree
{since a variable can not be found in a root node). If the
leaf contains a variable name then the system will replace
the leaf node by the value bound to the variable, which can
Le a whole subtree. On the other hand, if the 1leaf was a
constant or a template name then 1t is left alone. Finally,
when all the leaves have been treated, we detach the old

program subtree from 1its father and attach the synthesized

copy-

94

- . Ly o . P - - 3 - - . a o . -.;‘.V;- o -y PR

2 aa &




- Sl B Mt S S e e ran g . o, . Nacihen 4 A AR MM A

The algorithm which describes this function is defined as

follows:

ALGORITHM synthesize (p,s,cC);
BEGIN
copy (s,s1)
get_first_leaf (leaf,s1)
WHILE leaf <> NIL DO
BEGIN
IF is_variable (content (leaf)) THEN
{ extract from the range of ¢ the pointer to the
value bound to leaf, and make the replacement }
BEGIN
i := binding (content (leaf),c);
detach (leaf,father (leaf));
attach {i,father (leaf);
END; { leaf treated }
jet_nextleaf (1,s1):
ZND;
{ when all leaves treated }
detach (p,father (g)) ;
attacn (s1,father(p));

ZND synthesize.

5. Displaying the Eesult and the Rules Applied

In this step the interfpreter will display the result
of the transformaticnh. Note that this result can be an
entire program tree, 1in which <case the system will un.arse
it usiny the same process we descripved in the rule editor
ard the progranm editor. Eut before the result 1is
displayed,and only if the opticn 'rules' or 'r' was speci-
fied, the system will display the names of the rules
successfully applied. Also, the total number of these rules
willi be automatically displayed at the end of the prcygranm

interjretation.

95

PPy e e Bncadbattlh - YN P\

ol

‘ LM
& a4 Y PV

e e g
el il b,

s L'J’.J..J




-A152 716

UNCLASSIFIED

INVESTIGATION AND INPLEMENTATION OF A TREE 272 -
TRANSFORMATION SYSTEM FOR USER FRIENDLV PROGRAMMING CU)
NRVRL POSTGRADUATE SCHOOL MONTEREY CA M B CHOK DEC 84




ARl N APV Sel Pt Al Sl S b el Pai it detint el Sial Sut el (A ARG S AL N SR Sk . ek shd sadd Sl R T L RIS o e 1

N e e e
AR, R

lio s i

2 22

i

| . )

[
158

|

0 w = ‘W.fm'—r‘rr, y >

_LL Jag " %
I flee

[E2 s e

BUNMAMPR PN e

h' MICROCOPY RESOLUTION TEST CHART
NATWNAL BORE AL SHANDURDS b .

LERA Siae 2 Ya S g gy e o v




Y, VY v T
[ .

vy

6. Saving and Printing the Resuit

At the end of each [fprogram interpretation, the
system will give the user the cpportunity to manipulate the
result 1list. Thus, the system will ask the user the
following question:

"Do you wish to access the result list yes/no: "

A "no" answer will cause the system to abandon the result
list and redisplay the prompt signal (PI-->). A “yes" answver
will cause the transfer of the control to the program editor
where, as we explained in the previous chapter, the user can
request any operation he needs c¢cn the result list, such as
save, priat, or edit. In fact we did not impose any
restriction on the allowable operations even though it does
not make any sense to perform a restore, or an insertion on
the result list.

When these operations are terminated, and as soon as
the user exit the program editor, the control is return back
to the interpreter. Note, at this point, the result is lost
because the next time the user will have the opportunity to
reaccess the result list will ke after a new interpretation
request, but the o0ld result will be overwritten by the new
one.

As an alternative, and since a result list can
contain any number of program results, we could just append
each new result at the end of the result list, without over-
writing the 0o1d one. In fact this will not involve any
change in the implementation, because the interpreter will
use the insert function of the program editor, which takes
care of multiple programs in the same list. However, this
will create some practical protlems. For example, suppose
that during the interpretation session the user wants to
save each result on a separate file. This will not be

possible wunless the user, after each interpgretation,

R i A i i

A AR A .




e T Ny T TN TR T ST T T e Te T ¥, T, L,V
. . . . P 8 .

switches to the program editor and deletes from the iist the
previcus result, otherwise each new file will <contain the
old results in addition to the rew one. Alsc, suppose that
the user requests the interpretation of the same projranm
more than once (perhaps using different sets of rules). 1In
that case we have to decide, or let the user decide, whetrer
to overwrite the 0ld result, or create another one with the
same naame (since the result takes the name of the program),
whichk may create confusion for the user.

We think that it is much simpler to treat the result

list as a temporary list whose [fpurpose is to serve as a copy

for the transformaticn, and to give the user the possibility

to save or print the result on a disk file.

7. Applying the Built in Rules s

Built_in rules are put on the top of the user rule T

lists. That means, they take precedence on the user's ]
rules. These rules are ordered as listed in table XV When a

subtree of the program matches the analysis part of a »

built_in rule (i.e. either a Luilt_in template was used to .

construct the program-subtree, or the subtree was previously
transformed by applying a user rule), the interpreter will
call the appropriate built_in function to execute the opera-

tion, and return a single node containing the result of the

S, YROTe

execution.

However, before the execution, these functions will

check if the arqguments are of ccmpatible types (both numbers

for arithmetic operations, and toth numbers or both literals
9 for boolean expressions). When an error is detected the
! function will return a subtree whose root is the name of the
built_in template which correspcnds to the appropriate error
type, and whose two children are the arguments of the

o AL e

expression. These subtrees will later be unparsed according

to the corresponding built_in templates listed in table X.

T vV T Vv w
B .

97

el . N

e
b 2 & 5 4 »

L,A_- L T P P N s I Y W, VPR St DR . SO, W . SE W




S0 b vene And Jae et Ans St e An S e Sl el S el Sl et indiAnd WA ieil A A Sall Sl Sl Sl A A A St el At A A

TABLE XV
Built_in Rules

——————— i ——— —— ——— i — ——— — - —— - — ——

number a + number b ==> sum a b
nunber a - number b ==> sub a b
numker a / number b ==> div a b
constant a * constant b == pro a b

sum,sub,div,and pro are built_in functions which will
return a single node «containing the result of

oreration.

Rules for boolean operations

constant a = constant b ==> equ a b
constant a > constant b ==> gre a b
constant a < constant b ==> les a b

equ, gre, les are also built_in functions which will
return a single node containing the value "true or

“"false.

rule for eval

eval constant a ==> a
the built_in function evaluate will return a single

node containing the value of the argument

[ EEEEREEEREERERRAREEERREEREEERRRER R R R R R RR R R R R BB R K B
[ EEEEE R EEEEEEEEE R EERERRERERERERREREREEREEREESZEJESESEXEJ].]

For exanple, giving the subtree "6 ¢+ 3.45.3" the systen
will return a subtree whose root contains "error2" and whose
sons contain "6" and "3.45.3", which after wunparsing will
give:

‘error: right argument is not numeric 6 3.45.3"

98




As an alternative, we could have decided to leave

the subtree as it is (i.e. assume as the matching failed).
In fact this would agree with the defination of the built_in
rules, since the sons must be numbers for the arithmetic
expressions, and of compatible type for Boolean exfpressious.
later, in the conclusion, we will explain why it would be

better if we adopted the second alternative.

8. Exiting the Interpreter

As usual, we use the command EXIT to terminate the

interpretation session,and return to the user interface.

99

. LA;.L_) ‘s P S -




------

IVv. CONCIUSION

A. DESIGN ASPECTS

The purpose of this study has been the investigation and
the inplementation of a user friendly programming system
Lased on tree transformations. Thus, in Chapter 2 we
defined the various objects on which the system and the user
will operate. Also, we defiped and described a typical
scenario of the different steps for developing programs, and
we discussed the specifications of the programming environ-
ment. Along with this discussion, we defined a collectiorn
of tools which will support the user to accomplish all these
steps. That 1is, <create the templates and the rules and
write, interpret, and debug the programs. In Chapter 3 we
discussed the design and some of the implementation aspects,
and, except for the debugger, we described the different
facilities provided bty each of the environment tools to
manipulate the various objects.

The templates provided a means to define the semantic
and syntactic framework for the 1launguage which will be used
to write the rules and the prcgraams, and will guide the
system (via the place holders) to parse and unparse the
abstract trees representing the rules and the progranms. As
we have seen, this parsing process is done efficierntly with
the minimum necessary storage, without scarning or token
recognition except for determipning if the input is a temp-
late name, a constant, or a variable name. Also, this
process does not permit any syntactic errors, and prevents
the ccnstruction of incomplete cr incorrect structures.

The key words emtedded in the template's text play the

role of syntactic sugar to make the concrete form of the

100

I o g o s - PR 20 8l . L., - LS. TG WL

Y.




AR N AN S M R A T B A I o AR R o SR e e MOt AR B o R A° S I ARSI Al A e S A A At S A Y e

rules and programs more readalle, better <formatted, and
easier to understand by human tLteings. These coucrete forms T
can be <changed as the user desires by simply chanyging the !
key words, or by adding some mcre including comments. This

will not have any effect on the rest of the processes (i.e. ]

parsing, unparsing, and transiormation). fience, these 4
changes can take place after the construction of the rules q
and the fprograms. This will make it possiktle to hLave many i

different concrete forms for the same program or rule, wkich
represents a secondary application of the system to be used J
for the formatting of programs by supplying the appropriate |
set of templates. 1

Program formatting using our system, gJgoes beyond the
conventional formatting systens {i.e. indentation and
spacing between 1lines of code), by involving the program

text itself (i.e. the key words such as "if", ‘"else", "=t

nteacenddh I L e

etc.). This provides the user with a wide range of language
jevels which can go as high as his own natural language.

However, as we know, this is only partially true because the

.' .‘.‘ ‘v fy

user can not enter the concrete form as a normal text.

o«

This raises the issue whether or not we should include a
parser so the user can write the rules and the prograas in
the same way they are displayed. As you recall, in our

. Y

present system, the user requests a template name and the
system asks him to f£ill the place holders. In addition the
system displays the text of the template; thus the user
actually sees the concrete form with the place holders high-

Wi SETRrare

lighted, which relieves him from the task of writing all
these key words and making syntactic errors, which will
increase the time necessary to write the concrete forwm, and

the tinme necessary to construct the abstract trees.

). N

Instead, the user can gyive meaningful names to the templates

so he carn remember them easily (e.g. "if" for the if state-

ment) cduriny the insertion phase.

101




BRA A Sadt e At Je i et Sadk 4N 1l A SOV AV RAR- SAS RAGE ML 2 o iem it i St S S Sagt DA AN b et “ptt

Adding a parser to the system would make it possible for
the user to enter directly the concrete form using a counven-
tional text editor, but it would in turn involve a lot of
overnhead since the system has to go through the process of
scanning the concrete form, searching for the approjriate
template (i.e. using pattern matching) to Jdetermine the
structure it must construct. Also, this process is likely to
generate syntactic and semantic errors (e.g. incorrect
structure) anid consegquently it will affect considerakbly the
efficiency of the systen.

We think that our rule and program editors can be nore
flexible, uwmore powerful, and more adequate ir the present
environment than a conventional text editor provided that we
include an '"undo" feature, and a more elaborate modification

faciiity

1. The "Undo" Feature

The "undo" feature will allow the user to go back-
ward in the construction of the abstract tree. That is,
during the creation of a rule or a proyram, if the user
discovers that he entered an incorrect input, he can request
an "undo", which will cause the system to discard the value
input with 1its corresponding tree structure, readjust the
current position in the tree, and prompt again for the
replacement input. TFor example, suppose the user wants to

construct the following rule:
eval fact n ==> eval if n = 0 then 1 else n * fact n - 1

Further suppose that everythiny went correctly until the
step to enter "n = 0 %, this means the intermediate shape of
the abstract tree representing the above concrete rule will

be as follows:

102

L N

AW AW e i aa WAL



A et St e e v A it et Jaal Aei Jiart s et St et vt Jhi Sttt lesn ahalt ekt vt aen Ahytio Al et et ARkt Rt St et Rt el A S it ik At e it et Mt At T ey
R - i A s Rl [Rali Bl Bl P et g Pl R S P .

tempeval ==> tempeval
tempfact tenpif
n -—>

As indicated by the arrow, the current position is then at
the first son of "tempif" subtree. Now suppose the user
typed "tempgreat" instead of "tempegual". As a result the
system will display the text c¢f ‘"tempgreat", create its
corresponding subtree, fill 1its root with tihe name "teamp-
great", set the current position to the first son of the
created suktree, and wait for its value. By typing "undo"
the user will cause the system to discard "tempgreat",
destroy its corresponding subtree and readjust the current
position such that it points to the upper level (i.e. 1in

this case the first scn of "tempif" subtree).

2. The Modification Facility

The modification facility has been already discussed
in Chapter 3. It consists of making it possible to request

the replacement of a subtree by another one. The o0ld suktree

(VS DRI

is located by using, if necessary, multiple yualifiers. Wher

d

it is found, the systen will discard this subtree and ask
the wuser to input the replacement wusing the same ianput L

method described for the insertion. For example, sufppose we .

have already created the following rule: q
eval fact n ==> eval if n = 0 then 1 else n + fact n - 1 3
Now we want to change "n + fact n - 1" by "n * fact n - 1".
This wculd require to locate the subtree, which can be done !
by the ccmmand "locate synthesis.tempadd", where the quali- :
fier "synthesis" 1is added just to speed up the search for

103

. . L.
H Y Y S e o " Ao a . o PPy




the subtree, since "teapadd" is sufficient to uniguely iden-

tify the subtree we need. When the node is 1located the
system will display the subtree (i.e. in this case n + fact
n - 1), and will ask for the replacement by displaying: <2c¢>
(L.e. second level third son). At this momernt, the user can
start entering the new subtree in the same way as for inser-
tion. However, to avoid retyping the same thiny when there
is no change, the user can press the return key to notify
the system that the rest of the subtree remains unchanged.
Also, 1if the new structure has mor dependents the systen
will skip to the next input required for the extra indepen-
dent. Of course, this may require some overahead due consis-
tency checking between the new and the old structure, and
may require facilities to do wmultiple replacements in the
same sulbtree by jumping from one part to another.

This raises the issue whether or not we should have
included a structure editor which «can accomplish such navi-
gation operation, and allows the user to display ard modify
part of a rule or prograa, with the possibility of zooming
in and out. After experimenting the system we felt that such
editor with such facilities would be very helpful especially
during the debugging process +where, during the transforma-
tion, we need to lock at part of the program and the rules
to find out the origin of the trouble (e.g. why a given rule
didn't match a given part of the program, or what is the
intermediate result after the application of a given rule
etc.) . However, a structure editor alone will not Le able to
do all these operaticns. Therefore, we need a debugger with

the capability of answering specific guestions such as:

1. Why a rule can not be applied to the program in general,

or to a specific subtree?

2. When a rule is applied and to which subtree of the

progyram is it applied?

vl

a - L APV A P UL o WP S NONA_JRUOTLINC SR N PRGN SRR AU PO’ SOV SRS ‘j

Sl e e S i i e AN e




3. what is the intermediate result after a given rule is
applied?

In addition, the user nijkt Le interested 1irn
perzorming the interpretation step by step with the interme-
diate result displayed after each step, the possibility of
changing part of the fprogram or tne value of a jiven node to
see how 1t would affect the transformation process and the
result, alterinygy the order of application of the rules by
specifically giving the names and the orders of application,
arnd finally being able to reqguest backtrackinjy. The latter
request should not be difficult to implement, since it will
take a switch which tells the system that now the synthesis
part and the analysis part are inverted, and the order of
the rules is also inverted (i.e. select the rules starting
fron the bottom of the list). Fith that, the interpretation
should yive a backtracking of the orijinal one. For example

having the following intermediate result:

tempeval

tempif

e

:< 1 &

3 0 fact

T T T I Nre——— B T T T T ————ree——




PraergerrrsreT e ETR TN

This result is obtained by the application of the following
abkstract rule:

i\
1
v

tempeval tempeval

tempfact tempif

“ / / \O / \\

tenpfact

l_
s

By invertiny the rule and applyinyg it the result will be:
tempeval
te:Lfact

l

3

The akove alstract tree represerts the previous state of the

program (i.e. obtained by backtrackinjy)

3. Sumpacy of the System Extension

In suamary we suggest the extension of the system 1in

the following ways:

1. Overcome the problem of 1locsingy control when an attempt
to open a file fails because of an nonexistiny file name for
the RESTCHRE command. As we sugyested ia Chapter 3, this
will be done by a special rcutine which must check the
directory before an attempt tc open a3 file is made, and
subsequently either 4o ahead and open 1it, or send an error

message and return the control tkack to the user.

106

.!‘_....‘.-

-

Ah s L'-A. i




2. Chanye the template editor so that, like the other
modules, only one list can be present in the memory at any
given tiwe. This will provide standardization of the
modules, and avoid the user gettiny counfused as happened

during our experimentation with the template editor.

3. Restrict the ogperations the user can perform on tne
result list to SAVE, DISPLAY, and PRINT. This ensures, that
the user can not do meaningless operations on the resuit

list such as INSZRT, KESTORE, and DELETE.

4. As you recall, we delayed the control of the lists wnich
are created or changed during the session but not saved,
until the user requests a "QUIT" (i.e. exilsts completly the
system) . Thus, although we suygested that 1t would be
letter practice to save the lists when switching from one
nodule tc another, we did not think that we should enforce
it, or give a warning messaje Dpecause we don't know yet if
the user will return back and make otiner changes. But,
after we experimented with system we have decided that we
should have included this control within each module because
in some situations we lost cortrol of the system without
Lhaving the opportunity to go back to the appropriate editor
and save those lists. One ccmmon situation which illus-
trates tnis inpredictable situation is when we the systen
went into an  infinite loop duringy the 1interpretation
process. In this case the only way to stop is to abort the

job and return to UNIX.

5. Include a structure editor fcr the rules and the programs
with the facilities we have described, iancluding the “undo"™

ard "modiry" features.

6. Inciude a debuyger which ccoperates with the structure

editor to provide the facilities and auswer the kind of

questions we have described.

107

'
L444 - 4

,.. "_‘_LJ )AJ;J._LA. Ln_-__-.d

J

PP I S )

..®

A e e ma sk

1




w W T w e v TR W T T W T W T m W W W Ty s, T YT T T e R N R T AT AT R TR T T R TN TR LT e e T W T _‘_’,“____1
< A A B R N . . . R N - . h

G. USING THE TEMPLATE EDITOK

The template editor offers a collection of faciiities to
ranljyulate both the templates and the template lists. But
tefore we ~resent the different commands, 1let's make clear
the notion of current list and current template.

The template editor allows many lists to be simulta.e-
ously present in the memory which can be manipulated aliter-
natively one at a time. Therefcre, the current list is the
latest one which have been involved with a list operatior,
except for «reaove where the next list becomes the current
one, or "nil" when there is no next list to the removed orne.
These same rules apply to the notion of ~current template
within a list, but the current template will take the value

"nil"™ at the end of list or when the list is empty.

1. Built in Template

Trese templates are part of the systenm. They are
grouped in one list named BUILT_TEMP loaded automatically at
tue starting of each session. Once 1loaded the list can be

accessed like any other template list.

List ( OPEN LISTINAME )

This command allows one to create and initialize a
new list, or locate an existing list. In both cases the

specified list becomes the current 1list, but this will not

allow one to start the editing yet. This involves the next

command.

3. Edit a List (EDIT LISTNAME STARTING POINT

This command permits to start the editing session on
the given listname, fprovided that the 1list have been already
created Ly an OPEN or RESTORE ccamand. The listname may Le
omlitted in which case the ~ystem will assume by default the

current list.

121

P N - PR . - P S Y .A--LJ




LU

C. STARTING THE SESSION (TTPS)

When you type TTES the system will start the secsicr and
glve you the prompt ( --> ) to select the module you warnt to

run or to request help.

D. GETTING HELP (HELP)

by typing HELP the system will display on the screen the

informations relative to the module currently runniny.

E. SELECTING A MODULE

TEMPEDIT : selects the template editor.
RULEDIT : selects the rule editor.
PGMEDIT : select the program editor.
INTERPRET : select the interpreter.

F. ENDING THE SESSICN (QUIT)

To terainate the session and exit the TIPS you type
QUIT. However, before the system logs you off it will check
if there is any list left in the memory which hLas been
created or modified during the session but not saved. If
such a list or lists are found they will be listed oI the
screen, and you will be asked if you want to save these
lists or drop them. ©W®hen you answer by "NO" you confirm the
WOUIT", and the list will be destroyed. On the other hand,
if you answer "YES" you will get back the control, but it is
still your responsibility to save the lists you want to Ly

selecting the appropriate module and command.

129

A 2% e ] -.1

Y

'A..i,as.ué "

- .
%4




LU N LA Sy v

APPENDIX A
USER®*S GUIDE TO TTPS (A TREE TRANSPORMATION PROGRAMMING
SYSTEN)

A. INTRODUCTION

"TTPS"™ is a programming environasent which includes four
integrated tools: A template editor, a rule editor, a
rrogram editor, and an interpreter.

On the top of these modules there is the user interiace
whose function is to allow the user to log on and off,
initialize and control the session, and perform the

switching between the modules.

B. TYPING THE COMMANDS

A "TIPS" command may be typed entirely on one line, or
broken into a sequence of subccmpands. Thus, 1if you type
only the name of the command, the system will keep asking
for the remaining information until it is able to execute
the command properly, or until an error was detected.
However, if during this interaction you wish to akandon the
request you may do it by pressiny the escape key in place of
the next input.

Example:

Suprose you started a load operation by *typing EKESTORE,
the system will ask you for the name of the file, but for
some reason (perhaps you foryot the name of the file and you
want to check the directory), then instead of inputing the
name press the escape key. The system will aufomatically
disregard the command.

All the commands and their arguments can be typed usinyg
either upper case or lower case letters or a combination of
both.




the content of the roct to "Writtea". Thus, tue user car
reactivate it when he needs to, by inserting at the agpro-

pridate rplace in the rule 1ist a rule which looks like:
"written x m ==> write x a"

The "display" rule is similar to the "write'" rule but its
second son may be a whole subtree which must be unparsed and
displayed; then the reguest 1is disabled by replacinj

"display" with "displayed".

. e a a AP Y P ey 2 PP PP W Py s WY

T e Wy

i ®

e

[ ]




W — —_ T TR Y - - DA S Tadh S N

Both solutions seem to 1lack flexibility and
generality, since they will not work for the varialble naaes
and numbers larger than 20. Also strings will Le stored in
20 characters long ncdes, thus resulting in waste space due
to internal fragrentation, and in an increasingj complexity
in the rules which handle these strings. For all these
reasons we suggest the implementation of a more (deneral
solution, which consists of refresenting the data stored irn
the tree nodes by lipked lists. Thus, the content of each
node 1is variable rather than fixed like it is presently

implemented.
b. built_in rules

In order to imprcve the performance of the

system, we think it is necessary to include amore built_in
rules, such as rules for mathematical functions (e.g. square R
root, -exponentiation etc.), rules for list manipulation
(e.g. first, rest, null etc.), and rules for input/outjput
functions (e.g. open, read, write, display). In fact these
rules are now being impiemented. The open rule (1) takes a
subtree whose root contain the name of the "open template",
whose left son contains either "input" for input file or )
"output" for output file, and whose rigyht son contains the

name of the file to ocpen, (2) opens the file, (3) and

PROUIL YN

disable the regquest by replacing "open" with "opened". The

"read" rule takes a subtree whose root is "read template

name" (i.e. ‘''read") and whose left and rignt sons contain
respectively the name of the file, and a variabie name, (2)
replaces it by the input which <can be a constint value or
whole sulbtree. The "write" rule (1) takes a subtree whose

root contains "write" (i.e. the name of the write tenmplate),

L SR N

and whose left and right sons ccntain respectively, the name
of the cutput file, and the wvalue to be written, (2)

displays it, and (3) disables the write request by changiny

R R R -



an Ao e o du aes aen aue e e aee b Sba s e s WV R T e P R T T
e
ft case ===> P11 1if

- @)

L)

equal X nextcase egual X PL1 _if

- ——— ——— —————— ———— ———— — — ——— — ———— A —— Y — . — D = - —— i ——

v m n Yy v m eqaii\ v
N
Hrite ===> put
X
Figure 4.3 Abstract Transformation Rules for Case.

An alternative solutior. would be to define

a

template for each string largyer thanm 20 characters, and then

use the template name, in the rules and the progranms,

reference these strings.

to

IR S




adit o AR T ik Bdb S S e Sl Mt e

Fﬁ AT I TR T A T TR T I TY TN TN

firstcase : CASE v OF

m: X;
w
==>
IF v = m THEN
X,
ELSE ¥

midlecase : IF v = m THEN

m THEN

o)

o

<
"

X3
ELSE IF v = n THEN

lastcase : IF v = m THEN

-
]
<

1}

m THEN

o
o]
[N
o+
®
’-1
(X}

ARITELN (s)

PUT SKIP LIST (s)

- ————— ——— — —— . —————————— —— ————————— i — - - " ———

———— ———— ——————— ———— . ————— T ——— — —————— i —— —————— ————— o~

. - — ———— . —— s ——— — ——— ——— —— " ——— —— - —— ——— i  ———— ————— —

Figure 4.2 Concrete Transformation Rules for Case.

112

s ml Aol ml alow

v
b,

. N

A

WL

A

AR 4. A

P _.

Wi




TNy

— -y T S TR TN T T AT T TN TR T R T T T Ty T N T T RTEATRE T VLW YTYTY L.
ST MR .t PR L O T . - ot

case : CASE -- OF
nextcase : - ==
lastcase : —-—2--

- — — — o ———— —— — —— ———— ——— — - ——_— —— o —— o ————— ————— — — —_————— > ——

. ———— ———— —— ————— ———— ————— T —— —————————— ———— . —————

. —— o ————— — ———— ———— T ———— " ——————— —————— —— ——— —— ————————

- ———— s — v — — —— ———— — - —— —— ————— i — Y ———————— " —— i ——

Figure 4.1 The Teaplates for Case Transformation.

3. Llimitations and Constraints

a. Constants, and variable naming

In "ITPS"™ the length of constants and variable
names is limited by the size of the data we can store in a
tree node, which in the present case is limited to 20 char-
acters. Thus, 1in order to be able to handle strings longer
than this number, the user must define a structure which he
can call "concatenation". This structure concatenates

strings of 20 characters to obtain larger ones.

-

O




After transformation we will ottain the following seyuence

of PL/1 if statements:

IF country = 1 THEN

PUT SKIP LIST (‘country is Tunisia') ;
ELSE IF country = 2 THEN

PUT SKIP LIST ('country is France');
ELISE IF COUNTIRY = 3 THEN

PUOT SKIP 1IST ('country is Greece');
ELSE IF COUNTRY = 4 THEN

PUT SKIP LIST ('country is USA');

This transformation 1is done usiny the templates listed in
Figure 4.1, the concrete rules shown in Figures 4.2 and
their corresponding abstract forms shown in Figure 4.3.
Note that the source structure can be a program written in a
user defined form which can be transformed to a given
language before being compiled.

d. code generation

In this application we use the rules to generate
the code. That is, the analysis part of the rule represerts
the source program tree, and the synthesis part represents
the instructions which will be generated when a match occurs

between a program subtree and tbe analysis part of a rule.
€. system programming.

In this application we use the rules to trans-
form a given tree structure into a system call, which then
can be executed to return whatever result, which will
replace the original subtree. For example:
read file m ==> call i/o_routinel input_value
This rule, when applied, will <causes the execution of
"i/o_routinel", and the replacement of the subtree '"read

file am" ty the input_value.

13

oo deed




T

Using these templates we can write the followinJ expression:
((a * (b - c¢)) + d)
The abstract tree which represents tnis expression is as

follows:

add

mult o

a sub

b [of

Now, Ly replacing the old templates by the following ones:

add - -
sub I
mult P o= mm %

when unparsed, the same tree will be printed as:
abc-*4d+
Observe that, this translation does not reyguire any rule.

As another example cf a2 structure transformation
which reyuires the application of transformation rules, ve
can transform a Pascal <case ccnstruct 1into a sequence of
PL/1 if statements. For instance, if we have the following
case construct:

CASE country of
1: WRITELN ('country is Tunisia‘);
2: WRITELN (‘country is Frarce');
3: WRITELN ('country is 3reece');
4: WRITELN (‘country is USAY)

END; (* case of %)

112

Ko L

Ak

LI W WP

[}
-
!
-1
o

L

« @ - a* . om aw ot 2 Ty e



A A Sk A it S A AR S i e T A L e A T LowTREIISTFTENT R T AT YY"
I AT AN R PR . B . B .

Y Y Ty v g
Y P
-

a. sinulation of a Syntax Directed Elitor

»‘ . Using the templates we <can define the grammar
4

AN

for the legal syntax, and then using the program editor we
can construct the program tree Ly requesting the approfpriate
template for each type of comnstruct. When unparsed and
ii printed this abstract tree will give the text of the

1 program, which then can be used normally as a program text. i
For example, the template which describes the structure of a
Pascal "for loop" would be written as:

r“ tempfor : for -- 1= -- to --

el

{ E. formatting programs

f. This application has been already discussed; it
f consists of using the templates to describe how the progranm ’
< is to be formatted. This 1include indentation, spacing ]
& between lines and words, comment insertion, and word substi-
l’c ' tution. However, without a rarser only programs written i
using the "TITPS" program editor can be formated. Thus, in
S order to be general we need to add a parser capable of
] transfcrming a unformatted program text into abstract tree,
ti and then by supplying the aprropriate set of templates we
.

can have the same program unparsed and printed in its new

.
IS

form.

o

3

;- C. structure transformation, and string translation
r Given with the apfropriate templates and if
4

necessary the rules, the system is able to transform any

i M e,

[ program structure to another one, including string transla-
L. tions. For example, suppose we have the followiny set of }
templates:
add (== ¢ =)
sub s (== - =) ;
oult S 7
F'
111




Lath oun ammam e 4

rvvrT

P Pgp—

In addition "ITPS™ provides an appropriate environ-
ment for developing functional progyrams. As explained 1in
[Ref. 1], functional programming is important because it
encourages one to think at a higher level of abstraction, it
provides through its larde units (i.e. trees in our systen)
a methcd for programming large, parallel computers, and it
provides an adegyuate framework for AI applications.

We believe that the majcr difference between convern-
tional programming systems and "TTPS" is that the first
category provides primitive operations and the user has to
use them to construct his program and define 1its semantic
behavior throujh more complex structures (e.y. procedures,
and functions), with all the related problems of parameter
passing and side effects. In conventional programming
systems we have two separate entities; the programming
language and the progranm which represents a specific
instance which may or may not fit well in the 1language
framework. Therefore the user has the added burden of
adapting the problem solution to the features available in
the language. On the other hand, in TTPS these two entities
are inseparable because the language framework is designed

to solve the problem; therefore the user does not have to

deal with external constraints. Also, the rules are inde-
pendent from each other, thus the user does not have to
worry about side effects, and feature interaction. These

properties makes "TTIPS" appropriate for a wider class of
applications.

2. Other Specific Applications

Along with this classes of functional and conven-
tional applicatiomns, "ITPS" can be used for other specific

applications such as:

e i B o 2

_AmEmaC




RIS Siun arat sees st aoe L PR " Pt P i v R T Ry Caaann i I i

classical problems which might result from the adaptaticn of

the solution to the limited pcssibilities offered by the

proyramming language. On the other h. .4, in "ITPS" we adapt

the lianguage to the solution, since we create it for the

soluticn. Furthermore, as we have seen, the language can

even be changed at any step of the programminy developmernt R
process. There is nc doubt this flexibility and power will ,‘
have positive effects on the entire program 1life cycle )
including coding, debugging, and waintenansce; and will ]

result in a reduction of the time required to produce a 1
correct progranm. o

The third aspect corcerns the programming style.
With "TTPS" the user is 1liberated froa being tied to a
unique programming style. 1Instead, it allows him to define

the style he wants, which can be a functional type, a

K N

conventional type, a combination of both, or his own
specific style.
The templates and the rules represent an elegart,

easy, and natural way to define the syntax and the semantic

-

e @,

behavior of the programming system. With the rules we can
sinulate every kind of behavior including those of the

Py

constructs defined in conventional 1languages such as while,

for, <case, and if constructs. All this is dore using one

22

type of rule which maps trees 1into trees, thus providing a

uniform, clear, explicit, and natural way of reasoning.

L

These properties make it simple for the user to

P

reason about the program behavior at a high conceptual

it

level, since with trees he can define very large computa- -
tional units, which can be processed in parallel. However,
when the user desires, these trees can still represent small

units such as assignment staterments, or memory allocation.

'

AAA‘A PR W Y

By using larger units, programs can be constructed faster.
Also, the debugging process will be easier since with these
large units, and with the assistarce of the system, the user

can quickly locate the origin of the bug.

-
o

109

|
-y

L._.x e nnd




q
4
M
i
4
[}
[
4
\
{
ﬁ
1
;

T T et Ty Y Y vyl e R T O T RTVY R T TR OTRET VT T RTORET RN WM T A O T e T T ..
AR P - . - .

T

B. SYSTEM EVALUATION AND USES

1. General Applications

~

L g o rTryryoryr
PR
'

So far we have been mcstly Jdiscussing the design

aspects of the programming environment. In the rest of ttis

chapter we will focus on the programming system 1tself.
Tkat is, we will try to evaluate its advantages and its
linmitations. Also, we will make some suggestious about the
rossibility of extending its capability and improving its
performance.

our approach in evaluating "TIpS"® (Tree

Transformation Programming Systen) will be based on a
comparison between "TTPS" and conventional proygramming
systens. This analysis will Lte in terms of frierdlirness,
< appropriateness for a wider class of applications, and time
: required to produce a correct program to solve a given
problen.
In "TTPS" friendliness is achieved in many aspects.
The first aspect has leen already discussed ard concerns the
facilities provided by the programming environment tools
with the extensions we siuggested.
The second aspect concerns the programming language.
"ITPS™ allows the users to have a wide wvariety of high

level, <formatted natural languages. Unlike with conven-

rvv.rq;. .,”_r.#”

tional programming systems, the wuser is not required to
learn and master a formal language. Instead, he will define
his own language framework reflecting his own perception of
the syntactic and semantic aspects of his probler ard
adapted to his own style. This freedom has the advantage of
eliminating the time required to learn and master a fcrmal
language before being able to use it. Also, it enalkles the
user to tailor the languagye framework to be the minimum

necessary to solve his problem since he will define only the

S T 1——7-"—?1' W

templates and the rules he will need, thus eliminating the

108

s VT VI8

L S O G U Y VRPUIE VPG OO GE Y SO UIE Wy G U PN U WU SR JRIOF > S SO NP U Yy



T W T YW T WTTW YWY, T\ YT YT RTTTRTTEN Y e w T T W TV e T e T T R T T YT e
P i B ZEoa ety o mas wEnda e arae g T N Y T T Sl P A A Sl S Thdl (el S A PSSR AR s dn i AL AN il (o S

The starting point will indicate the place fron
where the editing will begin. It can be one of the
;‘ﬂ following points.
‘ FIRST : start from the beginning of the list
LAST : start at the end of the list
TEMPLATENAME : start at tle given template
kii NCT SPECIFIED: start from the current template
i The editing session will begin by displaying the

template which corresponds to the given starting point.
a. display the next template (RETURN KEY)

By pressing the return key you will get the
display of the next template «c¢r a message indicating that
the end of 1list is reached.

Y. insert a new template (INSERT)

The new templates will be inserted before the

U SELRE 208 v

. current template. However, if the list is empty the system
1: will automatically start the irsertion at the beginning of
3 the list. Insertion may be done at the end of the list when
- the message "end of list reached"™ appears omn the screen.

: Each new template nmust have a name and a body.
ii Thus, the system will give the froapt to type the name waich
may include from one up to ten characters. Next, it will
ask you to start typing the body of the template which is a
combination of words and place holders signified by two

successive minus signs (-). The template text is ended by
4
o the escape key. The end of the insertion is also indicated

by the escape key entered in the place of the nanme.

c. deleting a template (DELETE)

This command allows the deletion of the temrlate
currently displayed. After the deletion, the next template

will be automatically displayed and then becouaes the current

- 122

P WL YN W gy PN Srvimecttndh Bt et AR oM Bttt B P . i




o — T T YT LT Y TV TN TR A AN Sl AT T et R Al vjr-vv‘.‘iy*j-:-v—v-f-;—;v'.-jx--.—‘---—’_‘ e e T

one. Eventually the message "end of list" will appear when

- the template deleted happens to be the last orne in the list.
' d. search (TEMPLATE NAMNME)

During the editing c¢f a list, it is possible to
search for a given template by typing its nane. When found
it will be displayed and subsequently become the current
ore. On the other hand, if no template with the given rname
was found, the system will send an error message and return

back to the previous situation.

ca AR . s a 2 A A MK, A £ 2 a 3 ' R

e. ending the editing session (ESCA?PE)

By pressing the escape key you exit from the

edit mode, but the control remain in the template editor.

4. Direct Insertion (INSERT PLACE OF INSERTION)

This is an additiomal facilities which allows direct

o el 4 ABEERS. .

insertion without being in the editing mode. It can be used
when you need to make an insertion only, and at a particular {
place of the list. The place can be: !

FIRST : insertion at the beginning of the list {
LAST : insertion at the end of the list .
TEMPLATE NAME: before the given template

NCT SPECIFIED: before the current template of that list

S. Saving a List (SAVE FILENAME LISTNAME)

This command have the effect to save the given list

on a disk file and assign to that file the given name.3oth

names can be omitted in which <case the fuanction will save

the current list and assiyn its name to the created file.

This command loads the specified file with the given

listname. Fhen no listname is given the restore function

—Y

123

. ~ ) N . . . . . . <t “e
o oa e PP Y O [T DR S " a . » - S o




P T " T T ———" T N e A B o e e W WV e

will autcmatically assign to the list the name of the file.
However, you should be aware of two important things
concerning what happens when the given file does not exist
and when there is already a 1list in the memory with the

given nanme:

. Case 1

When no such file is fcund, the systex will abort
the job and subsequently the ccntent of the memory will be
lost. Therefore it is better fpractice to save things which
are created or modified during the session, before you issue
a restore command unless you are sure you have given the
correct file name. For this reason the system will send a
warning reminding ycu of this fact, and will give you a
second chance to verify the input file name, and in ccnse-
quence either correct it and ccnfirm the reguest, or abort

it for more verifications.

. case 2
When the given listname is already assigpned +to amn
existing list, the system will automatically ask you to
confirm the overwrite of the o0ld list or give another name

or simply abandon the request by pressing the escape key.

7. Remowing a List (REMOVE LISTNAME)

This command allows to remove a list from the memory
and free the occupied space. However, when the list to be

removed was created or modified duriny the same session but i

not saved, the system will send a warning message and yive
you the opportunity to abandon the regquest and save the list

cr confirm it.
Like the other commands,if the listname had not been
specified, the system will take the current list as default

value.

LAl SR A i e

AR . . . oa a4 s AN LT

124 j




L

R

> T L AEDan ubil Ao i Aeih amidhr aulihde watial il ghc i e — Phad A A Jhat i I A it A

Ye}
(ad
=
(o]
b=
=1
n
o+
n
=
1
o
(]
t
[ el
=
W
]
=
™
=
ta
-

f+
=
[}
tn
]
o
o]
=

Im
N

]

This command allows the concatenation of tle second
list with the first list yielding a third list. as usual,
the current list will be taken as default value for any one
of the three lists if they are not specified. Thus, at the
limit it is possible to concatenate a 1list with itself.
Listname3 can be eitker a new list or an existing one. The
latter case will be treated like an overwrite.

Note that here we have a situation where you may
have duplicate templates in the same list. When that
happens the system will notify you by giving the names of
all the duplicates found, but it is your responsitility to

delete the one you don't need or give different nanes.

9. Listing the Template Lists (LIST)

When you type this command the system will display a
listing of the names of all lists currently in the memory,
and the number of templates each list contains. “pil" will
be given when there is no list in the memory.

10. Inquire About the Current List and Template

By typing this command you will get a message indi-
cating the name of the current list and the current temglate
within this list.

H. USING THE ROLE EDITOR (RULELIT)

Like the template editor, the rule editor provides
facilities to manipulate individual templates and 1lists of
rules as a whole entity.However,now we can have only one
list in the memory. Thus, we will not have the notion of
current list, but we still have to keep track about the
current rule.

125

FEWNTVY Y YT e

SRR, JONDEDOOT. YRR

SCIPUN . SN




i Y - B Yadd L2t Tl LA Mt B 20 AR e Jebe s Ml S I 8 s e G agc i SO MR GE B ST i g B Il Ao Shatic i Mhate el S JRete Shef Shat St Shets St Sadh att et St Tt it el TRt il ad ]
A . . .. B . SR Bl - NS AR . SR

In general, we maripulate lists of rules in the same way
we do with lists of templates. There are, though, sonme
differences resulting from the fact that we have only one
list. Also, now we have to deal with two different forus of

the rules: the concrete form and the abstract fornm.

In the rest of this section we will introduce the
different commands to use the facilities provided by the
rule editor. However, we will simply mention the ones that
have been described in the template editor and spend more

time with the description of the new commands.

1. Built in Rules

like built_in templates, built_in rules are an inte-
gral part of the system which can be applied to the prcgranm
like the other rules. The synthesis part of these rule can
be either a single constant value or an error type.

Built_in rules can not be accessed by the rule

editor, therefore we will menticn them hecre.
a. rules for arithmetic operations

These rules take two operands, verify if they
are numbers and produce the result. The list includes rules
for the addition ( + ), the multiplication (*), the subtrac-

tion ( - ), and the division (/).
b. rules for Boolean oferation

These rules take two operands, verify if they
are of the same type (i.e both numbers, or both literals),
and produce a Boolean value ("true or "false). The list
includes rules for equality (=), ygreater than (>), and less
than ().

126




w e - - Ty 0 . &7 - T e T e T
P T T T T T PO APt Sra AT P S S ANl Sl A td ARG A AR i M SR < RN A TATL T e T ..

C. evaluate rule

: . This rule will. take 1its unigue argument and
f‘ evaluate it to return a single value which may be either a
' number, or a nonnumeric literal. Note that nuabers include
: integers and reals. Numbers are written as they are. On
the other hand nonnumeric literals must be preceded by a

double gquote ( " ).

2. QOpen a Rule List (QOPEN LISTNAME)

This command will create a new list, or if the list

. JRONN. JOSS

exists, it will reintialize it. The second case may reguire
the confirmation of the request if thne o0l1ld list has been
changed durinj the session but not saved yet.

!“*

3. Editing a Rule List (EDI

STARTING PLACE)

This function works exactly like the one described
in the template editor. It rfrovides the same operations
(INSERT, DELETE, DISPLAY, AND SEARCH). Of course, writing a
. rule is different than writing a template.
Each rule comprises three parts:The name of the
rule, the analysis part, and the synthesis part. The nanme is

entered first and may include from 1 up to 10 printable

5 PN, S

characters. Fhen finished the system will ask you to enter
the analysis part, and then the synthesis part. Both rparts
are constructed using the basic tree structure defined by

the templates.

e e e cum o am o

-
@

The best way to understand how a rule is entered is

to jo through an example. However, It will help if you

Ty

think in terms of tree structure rather than in terms of

PP G U

concrete structure, bLecause when you write the rule you are

‘ in fact building the tree at the same time, or more precisly ®
the system prepares the tree and you £fill the nodes with
constants, variables, or template names which will cause the

creation of new subtree.

-
SR, |

} 127

o “. .

. . R . - C s - . et .
| P S VT - PN P I T P . L z -t > - PG |




"

i " S

Y

C

L i Al S bt bl A A S SRt it S AN ANRAR 3 e A W W g ey g .

Example: Suppose we have already defined the following

templates:

evaltemp : eval --
iftemp : if -- then — else --

factemp : fact --

In terms of the tree the, <first tenmplate tells us
that an eval subtree will have one son,the second template
tells us that an if subtree will have three sons,and the
last template tells that a fact (factorial) subtree will
have cne sor.

Now suppose we want to write the following rule:
eval fact n ==> eval if n=0 then 1 else n #* fact n - 1

the akstract tree which corresponds to the above concrete
rule will look like

tenpeval ===> evaltemp
tempfact iftemp
L i , ,
n//// \\\\0 n////‘\::Bpfact

l
‘\\\\\
n/ 1
Now, how do we enter the rule so the system can built the
above tree? Since we don't have a parser to discover the
structure from the ccncrete form, we will use the templates
to tell the system which structure we need.Templates are
requested by their name.
Figure 3.9 represents the entire process for

enteriny the above rule. The inputs are written in capital

letters while the system output are written in small letter.

128

nl

v eorrvRe YTy vy
. -

Aed ko d A8 4




,,,,,,,,,,,,,,,,, R A A e e e

LA R A M s ~ A TR S Y d A A S DA & v MG Ausn RAsse e i A e B4 0ar g -]

rule name: FACTRULE

analysis part

la >
fact 2a >

EVALTEMP < eval
<l1la> FACTEMP <
<2a> N

synthesis part

EVALtenp < eval
<1a> IFTEMP
<2a>

1a >
< if 2a then
< 3a

<3a> N
<3b> 90
<2b> 1
<2¢c>* < 3a *
<3a>N
<3b> tempfact

<la> -
<

<
rule inserted

2b else 2 ¢ >
3b >

3b >

< fact 4a >

< 5a - 5b >
5a> n

5b> 1

Figure A.1 Example fcr
Notice that
the £
The
of nesting which
On the other hand
left to right,

will automatically display
the place holders indexed.
cates the level
of the tree.
position, from
correspond
The

noticed, we did not need to defin

to the position of the

last remark concermm

« because we used the built_in t

129

TV P VAL S R SN U SN

when we reguest

Inserting a Rule.

a template the systenm

ormat of the template with
number in the index indi-
corresponds to the heignt
, the letter indicates the
within the template which
son node of the subtree.

As

*,

s the templates, you

. and

e the terplates

emplates.

........



e —w—- —® %

w)

[ 2% ¢

e w—w T W W W T W T v

4. Direct Insertion (INSERT 2LACZ Cr INSERIION)

it
Ity

This command allows direct insertion without teing
in tlhe edit mode. Basicly it works like the irsertion Iron
the edit mode, except now you can specify explicitly the
place where to start the insertiorn. The place of insertion
can be first, 1last, a template name, or if omitted, the

insertion will be before the current rule.

5. Saving a List (SAVE FILENAME)

This command allows one to save the abstract forn
of the rules. When the filename is not specified the systen

will assign the name cf the list to the created file.

6. Printing a List on a Disk File (RRINT FILENAME)

This function will send a pretty printing of the
urparsed rule to a disk file. Basically it works 1like the
save function except, as we said, eachk rule 1is unparsed
according to the format given by the templates. For
example, having the following tree as part of an abstract

rule:

iftemplate

condition action alternative

with the following template:

iftemplate: if -- then

else

130

ok B

et LI IR SRS Sy



DA g D b i A B} o e SO
DA A Bagf eI B A Sulh Al Sedh Sed aent TRy R bl S A it S i M - CE

the abstract tree will yive the followinyg concrete form:

1if condition then
action
else

alternative

However, 1f the system can not find the appropriate
template, 1in our present case "iftemplate®", hLe will simply
print in preorder the subtree freceded by a question mark.
Thus, the above subtree would be printed as:

? iftemplate condition action alternative

e i

7. GRestoring a List (RESTOEFE FILENAME LISTNAME)

At

This command allows one to 1load into the —remory .

s

files cortaining only abstract rules. Thus, concrete rules

cannot be 1loaded because the system will not be able to

"A!L.._At"

parse them. An error will occur when an attempt is made to
4 restore files which dc not have the adequate structure.
For the rest of the details on this command refer to
KESTORE in the template editor.
R
8. Inguire About the Current Rule (CURRENT) v
when you type this command the system will give the
name of current rule, or "nil" when at the end of list. .
b
S. Ending the Rule Editor (EXIT) .
!
R
Wwhen you type exit you terminate the template editor .
and return back to the user interface where you can select -
another module or simply quit the systenm. .
o
-1
-
)
‘

131

. T T S S T - P



MNAAP S G A i A gl B~ B i R Tl Sl T A S R A M A i e g b an 4

I. USING THE PROGRAN EDITOR

In "ITPS" a program is treated like a rule except that

programs include only one part. Thus, we will use the same
facilities provided in the rule editor with rule 1list
becomingy program list, and with the rules replaced by

programs. Thus, it is possible to have several programs in

T

the same list, each one treated by the program editor like a
rule is treated by the rule editor.
For more information about how to wuse the different

facilities refer to the rule editor sectiorn. a

J. USING THE INTEBPRETER (INTEEPRET)

As we said earlier, this module is run by the command
INTERPRET. Once it takes control it will give you the

promyt to interpret your programs. The interpretaticn is

e b

started ty typing the name of the program, which may be
followed by the option RULES or simply R. When this ojption

is specified the system will display in seguential order the a

rules applied to the program. At the end it will give the .

number of rules successfully aprlied to your program. .
When the interpretation is completed you will have the ;

opportunity to save or print the result 1list called
"T.RESULT"™ on a disk file by an automatic switch from the
interrreter to the program editor. You may decline the )
offer by simply giving NO as an answer to the gquestion
displayed at the end of the interpretation.
Notice, that after you save or print the result the
control will return back to the interpreter so you «can
request the interpretation of the same program or an other

one froam the program list.

132




Lot GINEL AR i A

d L voow e W - v 3 . T T T
Pk are At LA L AtaL AL AT S T . - Rl . .- T BN B B

B JO

1. Exit the Interpreter (E3ID)

Like the other modules you exit the interpreter by o
the command ZXIT. This will give the control back to the 7
user interface.

e ‘_‘,A

Al

. IS SN, S

133

s ; l
. . . . LT . - . SO . s R R
PR PR W P T Y WP QO a4 oo e g ot g e . ™, - - I~




AT Nl e B S Rl e

B
PO = PP

LIST OF REFERENCES !

1. Maclennan, Bruce Je Functional gr%qgammin;
Jethodology: Theory and Practice.”  To be pubIiShed b7 *
Addison_VWesley. :
;
\

1 . FEPRPE L. I V)

. T

134

(.

o a o g o o P WL S WY W W U WP L. o, e




v =TT TUTTT e TR T W

AR A A S
o

BIBLIOGERAPHY
Aho, A. V., Johmnson S. C. "Optimal
Expression Trees" JACM 23, 122§.
Center for Research in Computing Techn
Cambridge, Mass., __Technical "Report
Transductions and Fapilies of Tiee Langua
1373
Backus, J., "Can Programming ke
Newmann Style? = A Functiona Style a
Programs" _Compunications of the ACH, v
Augiast 1973
Barrett, W. A., Compiler Construction: T
Science Reasearcin AsSsociates, 1579
Computing Laboratory, U. _of Newcastle U
Tecnnical Report 50, TIransformational Gra

and Compilers, by

F. TeKemer, 1573

TR TR TR TR T e T e W T

Liberated

Code Generation for

olo Havard d.
g3t 79 Treé
gyes, Ly E. Baker,

from the V

on
nd its_ Algebra of
olume 21 number 8,
heory and Practice.
pon Tyne, _England,
mmars for Langua jes

Killy J. F.,. "An Interactive Design Methodology for User
Frlenély Natural Language"™ ACM TIransactions, March 1984.
Kron, H. H., Practical Subtree Transformational Grammars.
Master Thesis, UTCT.5anta Cruz, CaIifornia, 7137

Kron, H. H., 1TIree Templates and Subtree Transformational
gg%gggg§. PH.D. DiSsertation, U.C. ~Santa~Cruz, Calitornia,

Waters, k. C.,
Progyram Editing"

IEEE Transacticns, Janua

“"The Proygrammer's Apgrenticezxnowledge Based

ry 1932

- » S Actnd (PRI,

PR S G ]

L N




10.

1.

el

INITIAL DISTRIEUTION LIST

Defense Technical Information Center
Cameron Stationm | .
Alexandria, Virginia 22314

Librarg, code 0142
Naval ostgradgate.School
Monterey, California 93943

Department Chairgsan, Code 52
Department of Ccmpufer Science
Naval Postgraduate School
Monterey, California93943

Computer Technology Curricular Office
code_ 37

Naval Postgraduate School

Monterey, Califcrnia 93943

Professor Bruce J. Maclennan, Code 52 ml
Department of Ccmputer Science
Monterey, California 93943

Professor Gordon H. Bradley, Code 52 bz
Department of Ccmputer Science
Monterey, California 33943

Ministere de la defense nationale .
Direction du Personnel et de la Formation
1, bd_ Bab M'Nara Tunis

Tunisia

Capitaine Chok M. Bechir .
Ministere de la L[efense Nationale

1, Bd Bab M'Nara Tunis
Tunisia

Lt.col Abdoulaye Dieng
Etat Major des Armees
BP 4042 Dakar

Republic of Senegal

Haior Harilaos Papadopoulos
Hellenic Air Force General Staff
Agia Barbara - Aigaleo

Athens - Greece

Captain Nasser Alsubaiei
SMC 1096 NPgS. )
Monterey, Califcrnia, 93943

136

. 3 LI WY [ SR PN SR L W S S O S S

No.

Copies

2 L awEma

2

"
s



— (e’ DR At aon 4 - TR AP A i

FILMED

L, 5-85

- DTIC

R N . . . -
P . ST o . ]
- PR T Y WA YR Py W V) S W0 S SA P PP Y0 Wil SRR,




